

 Bonfire

 v0.9.10-classic-beta.169

 [image: Logo]

 Table of contents

 	Bonfire Networks

 	Getting Started

 	Development setup

 	Hosting guide

 	Bonfire Changelog

 	Building on Bonfire

 	Add a new widget

 	Bonfire Navigation Sidebar

 	Add a new extension settings

 	Create a new extension

 	Create a new page

 	Make changes to an extension

 	What is a Bonfire extension

 	Project structure

 	Routing

 	What is a Bonfire flavour?

 	Working with flavour

 	Concepts

 	Bonfire Architecture

 	Bonfire-flavoured Elixir

 	Design Guidelines

 	Just commands

 	Needles and Pointers: Universal foreign keys, virtual schemas, and shared data fields for Ecto

 	Email Delivery in Bonfire

 	Boundaries for Access Control

 	Bonfire.API.GraphQL

 	Flavours of Bonfire

 	Bonfire Community

 	Bonfire Classic

 	Bonfire Community

 	Bonfire Cooperation

 	Bonfire Coordination

 	Open Science Network

 	Reflow

 	Upcycle

 	Data schemas

 	Bonfire.Data.Assort

 	Bonfire.Data.AccessControl

 	Bonfire.Data.ActivityPub

 	Bonfire.Data.Identity

 	Bonfire.Data.Social

 	Bonfire.Data.Edges

 	Bonfire.Data.SharedUser

 	UI extensions

 	Bonfire.UI.Common

 	Bonfire.UI.Me

 	Bonfire.UI.Social

 	Bonfire.UI.Social.Graph

 	Bonfire.UI.Posts

 	Bonfire.UI.Messages

 	Bonfire.UI.Reactions

 	Bonfire.UI.Moderation

 	Bonfire.UI.Topics

 	Bonfire UI Groups

 	Bonfire.UI.ValueFlows

 	Bonfire.UI.Kanban

 	Bonfire.UI.Coordination

 	Bonfire.UI.Reflow

 	Bonfire utilities

 	Bonfire.Files

 	Bonfire.Common

 	Bonfire.Epics

 	Bonfire.Ecto

 	Feature extensions

 	Bonfire.Classify

 	Bonfire.Tag

 	Bonfire.Label

 	Bonfire.OpenScience

 	Bonfire.Poll

 	Bonfire.OpenID

 	Bonfire.Search

 	Bonfire.Federate.ActivityPub

 	Bonfire.Editor.Milkdown

 	Bonfire.Me

 	Bonfire.Social

 	Bonfire.Social.Graph

 	Bonfire.Posts

 	Bonfire.Messages

 	Bonfire.Invite.Links

 	Bonfire.Pages

 	Bonfire.Quantify

 	Bonfire.Geolocate

 	ValueFlows

 	Bonfire.Breadpub

 	Bonfire.ValueFlows.Observe

 	Bonfire:Upcycle

 	Other utilities

 	Bonfire

 	ActivityPub

 	Needle.UID

 	Needle.ULID

 	EctoSparkles

 	Entrepôt

 	EntrepôtEcto

 	Paginator

 	Iconify for Phoenix

 	Voodoo

 	Untangle

 	Arrows

 	Exto

 	Absinthe Client

 	Dependencies

 	Classic

 	Cooperation

 	

 	Modules

 	Data schemas

 	Bonfire.Data.AccessControl.Acl

 	Bonfire.Data.AccessControl.Circle

 	Bonfire.Data.AccessControl.Controlled

 	Bonfire.Data.AccessControl.Encircle

 	Bonfire.Data.AccessControl.Grant

 	Bonfire.Data.AccessControl.InstanceAdmin

 	Bonfire.Data.AccessControl.Stereotyped

 	Bonfire.Data.AccessControl.Verb

 	Bonfire.Data.ActivityPub.Actor

 	Bonfire.Data.ActivityPub.Actor.Migration

 	Bonfire.Data.ActivityPub.Peer

 	Bonfire.Data.ActivityPub.Peered

 	Bonfire.Data.Assort.Ranked

 	Bonfire.Data.Assort.Ranked.Migration

 	Bonfire.Data.Edges.Edge

 	Bonfire.Data.Edges.EdgeTotal

 	Bonfire.Data.Identity.Account

 	Bonfire.Data.Identity.Accounted

 	Bonfire.Data.Identity.Alias

 	Bonfire.Data.Identity.AuthSecondFactor

 	Bonfire.Data.Identity.CareClosure

 	Bonfire.Data.Identity.Caretaker

 	Bonfire.Data.Identity.Character

 	Bonfire.Data.Identity.Credential

 	Bonfire.Data.Identity.Credential.Migration

 	Bonfire.Data.Identity.Email

 	Bonfire.Data.Identity.ExtraInfo

 	Bonfire.Data.Identity.Named

 	Bonfire.Data.Identity.Self

 	Bonfire.Data.Identity.Settings

 	Bonfire.Data.Identity.SettingsJSONSerdeData

 	Bonfire.Data.Identity.User

 	Bonfire.Data.SharedUser

 	Bonfire.Data.Social.APActivity

 	Bonfire.Data.Social.Activity

 	Bonfire.Data.Social.Bookmark

 	Bonfire.Data.Social.Boost

 	Bonfire.Data.Social.Created

 	Bonfire.Data.Social.Emoji

 	Bonfire.Data.Social.Feed

 	Bonfire.Data.Social.FeedPublish

 	Bonfire.Data.Social.Flag

 	Bonfire.Data.Social.Follow

 	Bonfire.Data.Social.Like

 	Bonfire.Data.Social.Message

 	Bonfire.Data.Social.Pin

 	Bonfire.Data.Social.Post

 	Bonfire.Data.Social.PostContent

 	Bonfire.Data.Social.Profile

 	Bonfire.Data.Social.Replied

 	Bonfire.Data.Social.Request

 	Bonfire.Data.Social.Seen

 	Bonfire.Data.Social.Sensitive

 	UI extensions

 	Bonfire.UI.Common

 	Bonfire.UI.Common.ComponentID

 	Bonfire.UI.Common.Endpoint.LiveReload

 	Bonfire.UI.Common.EndpointTemplate

 	Bonfire.UI.Common.ErrorHandling

 	Bonfire.UI.Common.ErrorHelpers

 	Bonfire.UI.Common.ErrorReportingPlug

 	Bonfire.UI.Common.LiveHandlers

 	Bonfire.UI.Common.LivePlugs

 	Bonfire.UI.Common.LivePlugs.AllowTestSandbox

 	Bonfire.UI.Common.LivePlugs.Csrf

 	Bonfire.UI.Common.LivePlugs.Helpers

 	Bonfire.UI.Common.LivePlugs.Locale

 	Bonfire.UI.Common.LivePlugs.StaticChanged

 	Bonfire.UI.Common.MaybeStaticGeneratorPlug

 	Bonfire.UI.Common.Modularity.DeclareHelpers

 	Bonfire.UI.Common.MultiTenancyPlug

 	Bonfire.UI.Common.MultiselectLive.LiveHandler

 	Bonfire.UI.Common.NavModule

 	Bonfire.UI.Common.Notifications

 	Bonfire.UI.Common.PlugProtect

 	Bonfire.UI.Common.Plugs.ActivityPub

 	Bonfire.UI.Common.Presence

 	Bonfire.UI.Common.PreviewContentLive

 	Bonfire.UI.Common.ReusableModalLive

 	Bonfire.UI.Common.Routes

 	Bonfire.UI.Common.SEO

 	Bonfire.UI.Common.SEOImage

 	Bonfire.UI.Common.SettingsModule

 	Bonfire.UI.Common.SmartInput.LiveHandler

 	Bonfire.UI.Common.SmartInputModule

 	Bonfire.UI.Common.StaticGenerator

 	Bonfire.UI.Common.StaticGeneratorPlug

 	Bonfire.UI.Common.Testing.Helpers

 	Bonfire.UI.Common.WidgetModule

 	Bonfire.UI.Coordination

 	Bonfire.UI.Coordination.FeedLive.GraphQL

 	Bonfire.UI.Coordination.ProcessLive.GraphQL

 	Bonfire.UI.Coordination.ProcessesLive.GraphQL

 	Bonfire.UI.Coordination.Routes

 	Bonfire.UI.Coordination.TaskLive.GraphQL

 	Bonfire.UI.Coordination.TasksLive.GraphQL

 	Bonfire.UI.Coordination.TodoLive.GraphQL

 	Bonfire.UI.Groups

 	Bonfire.UI.Groups.LiveHandler

 	Bonfire.UI.Groups.Routes

 	Bonfire.UI.Groups.RuntimeConfig

 	Bonfire.UI.Kanban

 	Bonfire.UI.Kanban.BoardLive.GraphQL

 	Bonfire.UI.Kanban.HomeLive.GraphQL

 	Bonfire.UI.Kanban.Routes

 	Bonfire.UI.Me

 	Bonfire.UI.Me.LivePlugs.AccountRequired

 	Bonfire.UI.Me.LivePlugs.AdminRequired

 	Bonfire.UI.Me.LivePlugs.LoadCurrentAccount

 	Bonfire.UI.Me.LivePlugs.LoadCurrentAccountUsers

 	Bonfire.UI.Me.LivePlugs.LoadCurrentUser

 	Bonfire.UI.Me.LivePlugs.LoadCurrentUserCircles

 	Bonfire.UI.Me.LivePlugs.UserRequired

 	Bonfire.UI.Me.Plugs.AccountRequired

 	Bonfire.UI.Me.Plugs.AdminRequired

 	Bonfire.UI.Me.Plugs.GuestOnly

 	Bonfire.UI.Me.Plugs.LoadCurrentAccount

 	Bonfire.UI.Me.Plugs.LoadCurrentAccountUsers

 	Bonfire.UI.Me.Plugs.LoadCurrentUser

 	Bonfire.UI.Me.Plugs.UserRequired

 	Bonfire.UI.Me.Routes

 	Bonfire.UI.Me.RuntimeConfig

 	Bonfire.UI.Messages.Routes

 	Bonfire.UI.Messages.RuntimeConfig

 	Bonfire.UI.Moderation.RuntimeConfig

 	Bonfire.UI.Posts.Routes

 	Bonfire.UI.Posts.RuntimeConfig

 	Bonfire.UI.Reactions.Routes

 	Bonfire.UI.Reactions.RuntimeConfig

 	Bonfire.UI.Reflow.Integration

 	Bonfire.UI.Reflow.InventoryLive.GraphQL

 	Bonfire.UI.Reflow.MaterialsLive.GraphQL

 	Bonfire.UI.Reflow.ProcessLive.GraphQL

 	Bonfire.UI.Reflow.ProcessesLive.GraphQL

 	Bonfire.UI.Reflow.ProfileInventoryLive.GraphQL

 	Bonfire.UI.Reflow.ResourceLive.GraphQL

 	Bonfire.UI.Reflow.Routes

 	Bonfire.UI.Social.Benchmark

 	Bonfire.UI.Social.Graph.RuntimeConfig

 	Bonfire.UI.Social.Integration

 	Bonfire.UI.Social.Routes

 	Bonfire.UI.Social.RuntimeConfig

 	Bonfire.UI.Topics

 	Bonfire.UI.Topics.LiveHandler

 	Bonfire.UI.Topics.Routes

 	Bonfire.UI.Topics.RuntimeConfig

 	Bonfire.UI.ValueFlows.AddMilestoneLive.GraphQL

 	Bonfire.UI.ValueFlows.CreateEconomicEventLive.LiveHandler

 	Bonfire.UI.ValueFlows.CreateResourceSpecForm

 	Bonfire.UI.ValueFlows.CreateUnitForm

 	Bonfire.UI.ValueFlows.CreateValueCalculationForm

 	Bonfire.UI.ValueFlows.Integration

 	Bonfire.UI.ValueFlows.IntentCreateActivityFieldsLive.GraphQL

 	Bonfire.UI.ValueFlows.RuntimeConfig

 	Bonfire.UI.ValueFlows.SettingsLive.GraphQL

 	Bonfire utilities

 	AnimalAvatarGenerator

 	Arrows

 	EctoSparkles

 	EctoSparkles.AutoMigrator

 	EctoSparkles.Changesets.Errors

 	EctoSparkles.DataMigration

 	EctoSparkles.DataMigration.Config

 	EctoSparkles.DataMigration.Runner

 	EctoSparkles.ErlangTermBinary

 	EctoSparkles.JSONSerdeData

 	EctoSparkles.Log

 	EctoSparkles.Migrator

 	EctoSparkles.NPlus1Detector

 	EctoSparkles.SanitiseStrings

 	Exto

 	Needle

 	Needle.Changesets

 	Needle.Form

 	Needle.Migration

 	Needle.Mixin

 	Needle.NotFound

 	Needle.Pointable

 	Needle.Pointer

 	Needle.Pointers

 	Needle.Random

 	Needle.Table

 	Needle.Tables

 	Needle.UID

 	Needle.ULID

 	Needle.ULID.Migration

 	Needle.Unpointable

 	Needle.Virtual

 	Releaser.Git

 	Releaser.Publish

 	Releaser.Tests

 	Releaser.VersionUtils

 	Untangle

 	Untangle.Time

 	Voodoo

 	Bonfire.API.GraphQL

 	Bonfire.API.GraphQL.Auth

 	Bonfire.API.GraphQL.CommonResolver

 	Bonfire.API.GraphQL.CommonSchema

 	Bonfire.API.GraphQL.Cursor

 	Bonfire.API.GraphQL.FetchFields

 	Bonfire.API.GraphQL.FetchPage

 	Bonfire.API.GraphQL.FetchPages

 	Bonfire.API.GraphQL.Fields

 	Bonfire.API.GraphQL.JSON

 	Bonfire.API.GraphQL.MastoCompatible.Router

 	Bonfire.API.GraphQL.Middleware.CollapseErrors

 	Bonfire.API.GraphQL.Middleware.Debug

 	Bonfire.API.GraphQL.Middleware.RenderLists

 	Bonfire.API.GraphQL.Page

 	Bonfire.API.GraphQL.PageInfo

 	Bonfire.API.GraphQL.Pages

 	Bonfire.API.GraphQL.Pagination

 	Bonfire.API.GraphQL.PlugPipelines

 	Bonfire.API.GraphQL.Plugs.GraphQLContext

 	Bonfire.API.GraphQL.QueryHelper

 	Bonfire.API.GraphQL.ResolveField

 	Bonfire.API.GraphQL.ResolveFields

 	Bonfire.API.GraphQL.ResolvePage

 	Bonfire.API.GraphQL.ResolvePages

 	Bonfire.API.GraphQL.ResolveRootPage

 	Bonfire.API.GraphQL.RestAdapter

 	Bonfire.API.GraphQL.RestAdapter.EndpointConfig

 	Bonfire.API.GraphQL.Router

 	Bonfire.API.GraphQL.SchemaPipelines

 	Bonfire.API.GraphQL.SchemaUtils

 	Bonfire.API.GraphQL.Test.GraphQLAssertions

 	Bonfire.API.GraphQL.UserSocket

 	Bonfire.Boundaries

 	Bonfire.Boundaries.Acls

 	Bonfire.Boundaries.Acts.SetBoundaries

 	Bonfire.Boundaries.Blocks

 	Bonfire.Boundaries.Blocks.LiveHandler

 	Bonfire.Boundaries.Circles

 	Bonfire.Boundaries.Controlleds

 	Bonfire.Boundaries.Debug

 	Bonfire.Boundaries.Grants

 	Bonfire.Boundaries.Integration

 	Bonfire.Boundaries.LiveHandler

 	Bonfire.Boundaries.Queries

 	Bonfire.Boundaries.Roles

 	Bonfire.Boundaries.RuntimeConfig

 	Bonfire.Boundaries.Scaffold

 	Bonfire.Boundaries.Scaffold.Instance

 	Bonfire.Boundaries.Scaffold.Users

 	Bonfire.Boundaries.Summary

 	Bonfire.Boundaries.Users

 	Bonfire.Boundaries.Users.PreparedBoundaries

 	Bonfire.Boundaries.Verbs

 	Bonfire.Boundaries.Web.ExcludeBoundaries

 	Bonfire.Boundaries.Web.Routes

 	Bonfire.Common

 	Bonfire.Common.AntiSpam

 	Bonfire.Common.AntiSpam.Akismet

 	Bonfire.Common.AntiSpam.BumblebeeAdapter

 	Bonfire.Common.AntiSpam.Mock

 	Bonfire.Common.AntiSpam.Provider

 	Bonfire.Common.Benchmark

 	Bonfire.Common.Cache

 	Bonfire.Common.Cache.DiskCache

 	Bonfire.Common.Changelog.Github.DataGrabber

 	Bonfire.Common.Config

 	Bonfire.Common.Config.Error

 	Bonfire.Common.Config.LoadExtensionsConfig

 	Bonfire.Common.ConfigModule

 	Bonfire.Common.ContextModule

 	Bonfire.Common.Crypto

 	Bonfire.Common.DatesTimes

 	Bonfire.Common.E

 	Bonfire.Common.Enums

 	Bonfire.Common.Errors

 	Bonfire.Common.Extend

 	Bonfire.Common.ExtensionBehaviour

 	Bonfire.Common.ExtensionModule

 	Bonfire.Common.Extensions

 	Bonfire.Common.Extensions.Diff

 	Bonfire.Common.HTTP

 	Bonfire.Common.HTTP.Connection

 	Bonfire.Common.HTTP.RequestBuilder

 	Bonfire.Common.Localise

 	Bonfire.Common.Localise.Cldr

 	Bonfire.Common.Localise.Cldr.AcceptLanguage

 	Bonfire.Common.Localise.Cldr.Calendar

 	Bonfire.Common.Localise.Cldr.Currency

 	Bonfire.Common.Localise.Cldr.Date

 	Bonfire.Common.Localise.Cldr.Date.Interval

 	Bonfire.Common.Localise.Cldr.DateTime

 	Bonfire.Common.Localise.Cldr.DateTime.Format

 	Bonfire.Common.Localise.Cldr.DateTime.Formatter

 	Bonfire.Common.Localise.Cldr.DateTime.Interval

 	Bonfire.Common.Localise.Cldr.DateTime.Relative

 	Bonfire.Common.Localise.Cldr.Interval

 	Bonfire.Common.Localise.Cldr.Language

 	Bonfire.Common.Localise.Cldr.List

 	Bonfire.Common.Localise.Cldr.Locale

 	Bonfire.Common.Localise.Cldr.LocaleDisplay

 	Bonfire.Common.Localise.Cldr.Number

 	Bonfire.Common.Localise.Cldr.Number.Cardinal

 	Bonfire.Common.Localise.Cldr.Number.Format

 	Bonfire.Common.Localise.Cldr.Number.Formatter.Decimal

 	Bonfire.Common.Localise.Cldr.Number.Ordinal

 	Bonfire.Common.Localise.Cldr.Number.PluralRule.Range

 	Bonfire.Common.Localise.Cldr.Number.Symbol

 	Bonfire.Common.Localise.Cldr.Number.System

 	Bonfire.Common.Localise.Cldr.Number.Transliterate

 	Bonfire.Common.Localise.Cldr.Rbnf.NumberSystem

 	Bonfire.Common.Localise.Cldr.Rbnf.Ordinal

 	Bonfire.Common.Localise.Cldr.Rbnf.Spellout

 	Bonfire.Common.Localise.Cldr.Territory

 	Bonfire.Common.Localise.Cldr.Time

 	Bonfire.Common.Localise.Cldr.Time.Interval

 	Bonfire.Common.Localise.Cldr.Unit

 	Bonfire.Common.Localise.Gettext

 	Bonfire.Common.Localise.Gettext.Helpers

 	Bonfire.Common.Localise.Gettext.Plural

 	Bonfire.Common.Media

 	Bonfire.Common.MemoryMonitor

 	Bonfire.Common.Modularity.DeclareHelpers

 	Bonfire.Common.Module.Override

 	Bonfire.Common.Needles

 	Bonfire.Common.Needles.Pointers.Queries

 	Bonfire.Common.Needles.Preload

 	Bonfire.Common.Needles.Tables

 	Bonfire.Common.Needles.Tables.Queries

 	Bonfire.Common.Opts

 	Bonfire.Common.PubSub

 	Bonfire.Common.PubSub.Event

 	Bonfire.Common.QueryModule

 	Bonfire.Common.Repo

 	Bonfire.Common.Repo.Delete

 	Bonfire.Common.Repo.Filter

 	Bonfire.Common.Repo.Preload

 	Bonfire.Common.Repo.Utils

 	Bonfire.Common.RepoTemplate

 	Bonfire.Common.RuntimeConfig

 	Bonfire.Common.SchemaModule

 	Bonfire.Common.Settings

 	Bonfire.Common.Settings.LiveHandler

 	Bonfire.Common.Settings.LoadInstanceConfig

 	Bonfire.Common.Simulation

 	Bonfire.Common.StartupTimer

 	Bonfire.Common.Test.Interactive

 	Bonfire.Common.Test.Interactive.Helpers

 	Bonfire.Common.Test.Interactive.Observer

 	Bonfire.Common.TestInstanceRepo

 	Bonfire.Common.Text

 	Bonfire.Common.TextExtended

 	Bonfire.Common.Types

 	Bonfire.Common.URIs

 	Bonfire.Common.Utils

 	Bonfire.Ecto

 	Bonfire.Ecto.Acts.Begin

 	Bonfire.Ecto.Acts.Commit

 	Bonfire.Ecto.Acts.Delete

 	Bonfire.Ecto.Acts.Work

 	Bonfire.Epics

 	Bonfire.Epics.Act

 	Bonfire.Epics.Debug

 	Bonfire.Epics.Epic

 	Bonfire.Epics.Error

 	Bonfire.Epics.Test

 	Bonfire.Files

 	Bonfire.Files.Acts.AttachMedia

 	Bonfire.Files.Acts.Delete

 	Bonfire.Files.Acts.URLPreviews

 	Bonfire.Files.BannerUploader

 	Bonfire.Files.Blurred

 	Bonfire.Files.CapsuleIntegration.Attacher

 	Bonfire.Files.DOI

 	Bonfire.Files.Definition

 	Bonfire.Files.DocumentUploader

 	Bonfire.Files.EmojiUploader

 	Bonfire.Files.FaviconStore

 	Bonfire.Files.FileDenied

 	Bonfire.Files.IconUploader

 	Bonfire.Files.ImageUploader

 	Bonfire.Files.LiveHandler

 	Bonfire.Files.Media

 	Bonfire.Files.Media.Queries

 	Bonfire.Files.MediaEdit

 	Bonfire.Files.MimeTypes

 	Bonfire.Files.Prepare

 	Bonfire.Files.Queues.VideoTranscode

 	Bonfire.Files.ResponsiveImage

 	Bonfire.Files.Routes

 	Bonfire.Files.RuntimeConfig

 	Bonfire.Files.Simulation

 	Bonfire.Files.Versions

 	Bonfire.Files.VideoUploader

 	Bonfire.Mailer

 	Bonfire.Mailer.Bamboo

 	Bonfire.Mailer.Behaviour

 	Bonfire.Mailer.Checker

 	Bonfire.Mailer.Render

 	Bonfire.Mailer.RuntimeConfig

 	Bonfire.Mailer.Swoosh

 	Bonfire.Web.Endpoint

 	Bonfire.Web.FakeRemoteEndpoint

 	Bonfire.Web.Router

 	Bonfire.Web.Router.CORS

 	Bonfire.Web.Router.Reverse

 	Bonfire.Web.Router.Routes

 	Bonfire.Web.ViewInventoryLive.GraphQL

 	Feature extensions

 	ValueFlows

 	ValueFlows.Agent.Agents

 	ValueFlows.Agent.Organizations

 	ValueFlows.Agent.People

 	ValueFlows.Agreement

 	ValueFlows.AllMigrations

 	ValueFlows.Claim

 	ValueFlows.Claim.Claims

 	ValueFlows.Claim.GraphQL

 	ValueFlows.Claim.Queries

 	ValueFlows.EconomicEvent

 	ValueFlows.EconomicEvent.EconomicEvents

 	ValueFlows.EconomicEvent.EventSideEffects

 	ValueFlows.EconomicEvent.GraphQL

 	ValueFlows.EconomicEvent.LiveHandler

 	ValueFlows.EconomicEvent.Queries

 	ValueFlows.EconomicEvent.Trace

 	ValueFlows.EconomicEvent.Track

 	ValueFlows.EconomicResource

 	ValueFlows.EconomicResource.EconomicResources

 	ValueFlows.EconomicResource.LiveHandler

 	ValueFlows.EconomicResource.Queries

 	ValueFlows.Knowledge.Action

 	ValueFlows.Knowledge.Action.Actions

 	ValueFlows.Knowledge.ProcessSpecification

 	ValueFlows.Knowledge.ProcessSpecification.GraphQL

 	ValueFlows.Knowledge.ProcessSpecification.ProcessSpecifications

 	ValueFlows.Knowledge.ProcessSpecification.Queries

 	ValueFlows.Knowledge.ResourceSpecification

 	ValueFlows.Knowledge.ResourceSpecification.GraphQL

 	ValueFlows.Knowledge.ResourceSpecification.LiveHandler

 	ValueFlows.Knowledge.ResourceSpecification.Queries

 	ValueFlows.Knowledge.ResourceSpecification.ResourceSpecifications

 	ValueFlows.Observe.Classifications

 	ValueFlows.Observe.Hydration

 	ValueFlows.Observe.Integration

 	ValueFlows.Observe.ObservablePhenomenons

 	ValueFlows.Observe.ObservablePhenomenonsGraphQL

 	ValueFlows.Observe.ObservableProperties

 	ValueFlows.Observe.ObservablePropertiesGraphQL

 	ValueFlows.Observe.Observation

 	ValueFlows.Observe.Observation.Queries

 	ValueFlows.Observe.Observations

 	ValueFlows.Observe.Observations.ObservationsResolvers

 	ValueFlows.Observe.Seeds

 	ValueFlows.Observe.Simulate

 	ValueFlows.Planning.Commitment

 	ValueFlows.Planning.Commitment.Commitments

 	ValueFlows.Planning.Commitment.GraphQL

 	ValueFlows.Planning.Commitment.Queries

 	ValueFlows.Planning.Intent

 	ValueFlows.Planning.Intent.GraphQL

 	ValueFlows.Planning.Intent.Intents

 	ValueFlows.Planning.Intent.LiveHandler

 	ValueFlows.Planning.Intent.Queries

 	ValueFlows.Planning.Satisfaction

 	ValueFlows.Planning.Satisfaction.GraphQL

 	ValueFlows.Planning.Satisfaction.Queries

 	ValueFlows.Planning.Satisfaction.Satisfactions

 	ValueFlows.Process

 	ValueFlows.Process.LiveHandler

 	ValueFlows.Process.Processes

 	ValueFlows.Process.Queries

 	ValueFlows.Proposal

 	ValueFlows.Proposal.GraphQL

 	ValueFlows.Proposal.Proposals

 	ValueFlows.Proposal.ProposedIntent

 	ValueFlows.Proposal.ProposedIntentQueries

 	ValueFlows.Proposal.ProposedIntents

 	ValueFlows.Proposal.ProposedTo

 	ValueFlows.Proposal.ProposedToQueries

 	ValueFlows.Proposal.ProposedTos

 	ValueFlows.Proposal.Queries

 	ValueFlows.Util

 	ValueFlows.Util.Federation

 	ValueFlows.ValueCalculation

 	ValueFlows.ValueCalculation.GraphQL

 	ValueFlows.ValueCalculation.Queries

 	ValueFlows.ValueCalculation.ValueCalculations

 	Bonfire.Breadpub

 	Bonfire.Breadpub.IntentLive.GraphQL

 	Bonfire.Breadpub.MapLive.GraphQL

 	Bonfire.Breadpub.Web.HomeLive.GraphQL

 	Bonfire.Breadpub.Web.Routes

 	Bonfire.Classify

 	Bonfire.Classify.Categories

 	Bonfire.Classify.Category

 	Bonfire.Classify.Category.Queries

 	Bonfire.Classify.LiveHandler

 	Bonfire.Classify.RuntimeConfig

 	Bonfire.Classify.Simulate

 	Bonfire.Classify.Tree

 	Bonfire.Federate.ActivityPub

 	Bonfire.Federate.ActivityPub.Adapter

 	Bonfire.Federate.ActivityPub.AdapterUtils

 	Bonfire.Federate.ActivityPub.BoundariesMRF

 	Bonfire.Federate.ActivityPub.FederationModules

 	Bonfire.Federate.ActivityPub.Incoming

 	Bonfire.Federate.ActivityPub.Instances

 	Bonfire.Federate.ActivityPub.LoadTesting

 	Bonfire.Federate.ActivityPub.NodeinfoAdapter

 	Bonfire.Federate.ActivityPub.Outgoing

 	Bonfire.Federate.ActivityPub.Peered

 	Bonfire.Federate.ActivityPub.RuntimeConfig

 	Bonfire.Federate.ActivityPub.Simulate

 	Bonfire.Geolocate

 	Bonfire.Geolocate.Geocode

 	Bonfire.Geolocate.Geolocation

 	Bonfire.Geolocate.Geolocations

 	Bonfire.Geolocate.GraphQL.Hydration

 	Bonfire.Geolocate.LiveHandler

 	Bonfire.Geolocate.Places

 	Bonfire.Geolocate.Queries

 	Bonfire.Geolocate.RuntimeConfig

 	Bonfire.Geolocate.Simulate

 	Bonfire.Geolocate.Web.Routes

 	Bonfire.Invite.Links

 	Bonfire.Invite.Links.Fake

 	Bonfire.Invite.Links.Integration

 	Bonfire.Invite.Links.LiveHandler

 	Bonfire.Invite.Links.Web.Routes

 	Bonfire.InviteLink

 	Bonfire.Label

 	Bonfire.Label.Acts.LabelObject

 	Bonfire.Label.ContentLabels

 	Bonfire.Label.Fake

 	Bonfire.Label.Labelling

 	Bonfire.Label.Labels

 	Bonfire.Label.LiveHandler

 	Bonfire.Label.RuntimeConfig

 	Bonfire.Label.Web.Routes

 	Bonfire.Localise

 	Bonfire.Me

 	Bonfire.Me.Accounts

 	Bonfire.Me.Accounts.ChangeEmailFields

 	Bonfire.Me.Accounts.ChangePasswordFields

 	Bonfire.Me.Accounts.ConfirmEmailFields

 	Bonfire.Me.Accounts.ForgotPasswordFields

 	Bonfire.Me.Accounts.LoginFields

 	Bonfire.Me.Accounts.Queries

 	Bonfire.Me.Accounts.SecondFactors

 	Bonfire.Me.Acts.Caretaker

 	Bonfire.Me.Acts.Creator

 	Bonfire.Me.Archive.LiveHandler

 	Bonfire.Me.Characters

 	Bonfire.Me.DeleteWorker

 	Bonfire.Me.Fake

 	Bonfire.Me.Fake.Helpers

 	Bonfire.Me.Integration

 	Bonfire.Me.Mails

 	Bonfire.Me.Mails.EmailView

 	Bonfire.Me.Profiles

 	Bonfire.Me.Profiles.LiveHandler

 	Bonfire.Me.RuntimeConfig

 	Bonfire.Me.SharedUsers

 	Bonfire.Me.Users

 	Bonfire.Me.Users.LiveHandler

 	Bonfire.Me.Users.Queries

 	Bonfire.Messages

 	Bonfire.Messages.Fake

 	Bonfire.Messages.Integration

 	Bonfire.Messages.LiveHandler

 	Bonfire.OpenID

 	Bonfire.OpenID.Client

 	Bonfire.OpenID.Fake

 	Bonfire.OpenID.Plugs.AuthRequired

 	Bonfire.OpenID.Plugs.Authorize

 	Bonfire.OpenID.Plugs.ClientID

 	Bonfire.OpenID.Provider.ClientApps

 	Bonfire.OpenID.Provider.OAuth

 	Bonfire.OpenID.RuntimeConfig

 	Bonfire.OpenID.Web.Routes

 	Bonfire.OpenScience

 	Bonfire.OpenScience.APIs

 	Bonfire.OpenScience.Fake

 	Bonfire.OpenScience.RuntimeConfig

 	Bonfire.OpenScience.Web.Routes

 	Bonfire.Pages

 	Bonfire.Pages.Acts.Page.Create

 	Bonfire.Pages.Acts.Section.Upsert

 	Bonfire.Pages.LiveHandler

 	Bonfire.Pages.Page

 	Bonfire.Pages.Section

 	Bonfire.Pages.Sections

 	Bonfire.Pages.Web.Routes

 	Bonfire.Poll

 	Bonfire.Poll.Acts.Choices.Upsert

 	Bonfire.Poll.Choice

 	Bonfire.Poll.Choices

 	Bonfire.Poll.Fake

 	Bonfire.Poll.LiveHandler

 	Bonfire.Poll.Question

 	Bonfire.Poll.Question.Create

 	Bonfire.Poll.Questions

 	Bonfire.Poll.RuntimeConfig

 	Bonfire.Poll.Vote

 	Bonfire.Poll.Votes

 	Bonfire.Poll.Web.Routes

 	Bonfire.Posts

 	Bonfire.Posts.Acts.Posts.Publish

 	Bonfire.Posts.Fake

 	Bonfire.Posts.Integration

 	Bonfire.Posts.LiveHandler

 	Bonfire.Quantify

 	Bonfire.Quantify.GraphQL.Hydration

 	Bonfire.Quantify.Measure

 	Bonfire.Quantify.Measures

 	Bonfire.Quantify.Measures.Queries

 	Bonfire.Quantify.Simulate

 	Bonfire.Quantify.Unit

 	Bonfire.Quantify.Units

 	Bonfire.Quantify.Units.Queries

 	Bonfire.RuntimeConfig

 	Bonfire.Search

 	Bonfire.Search.Acts.Queue

 	Bonfire.Search.Fuzzy

 	Bonfire.Search.HTTP

 	Bonfire.Search.Indexer

 	Bonfire.Search.LiveHandler

 	Bonfire.Search.Meili

 	Bonfire.Search.RuntimeConfig

 	Bonfire.Search.Stopwords

 	Bonfire.Search.Web.Routes

 	Bonfire.Seeder

 	Bonfire.Social

 	Bonfire.Social.APActivities

 	Bonfire.Social.Activities

 	Bonfire.Social.Acts.Activity

 	Bonfire.Social.Acts.Activity.UnderObject

 	Bonfire.Social.Acts.AntiSpam

 	Bonfire.Social.Acts.Federate

 	Bonfire.Social.Acts.Feeds

 	Bonfire.Social.Acts.LivePush

 	Bonfire.Social.Acts.Objects.Delete

 	Bonfire.Social.Acts.PostContents

 	Bonfire.Social.Acts.Sensitivity

 	Bonfire.Social.Acts.Threaded

 	Bonfire.Social.Answers

 	Bonfire.Social.Bookmarks

 	Bonfire.Social.Bookmarks.LiveHandler

 	Bonfire.Social.Boosts

 	Bonfire.Social.Boosts.LiveHandler

 	Bonfire.Social.Edges

 	Bonfire.Social.Fake

 	Bonfire.Social.FeedActivities

 	Bonfire.Social.Feeds

 	Bonfire.Social.Feeds.LiveHandler

 	Bonfire.Social.Flags

 	Bonfire.Social.Flags.LiveHandler

 	Bonfire.Social.Graph

 	Bonfire.Social.Graph.Aliases

 	Bonfire.Social.Graph.Aliases.LiveHandler

 	Bonfire.Social.Graph.Fake

 	Bonfire.Social.Graph.Follows

 	Bonfire.Social.Graph.Follows.LiveHandler

 	Bonfire.Social.Graph.Import

 	Bonfire.Social.Graph.Integration

 	Bonfire.Social.Likes

 	Bonfire.Social.Likes.LiveHandler

 	Bonfire.Social.LivePush

 	Bonfire.Social.Objects

 	Bonfire.Social.Objects.LiveHandler

 	Bonfire.Social.Pins

 	Bonfire.Social.Pins.LiveHandler

 	Bonfire.Social.PostContents

 	Bonfire.Social.Requests

 	Bonfire.Social.Seen

 	Bonfire.Social.Tags

 	Bonfire.Social.Threads

 	Bonfire.Social.Threads.LiveHandler

 	Bonfire.Tag

 	Bonfire.Tag.Acts.Tag

 	Bonfire.Tag.Autocomplete

 	Bonfire.Tag.GraphQL.TagResolver

 	Bonfire.Tag.Hashtag

 	Bonfire.Tag.LiveHandler

 	Bonfire.Tag.Queries

 	Bonfire.Tag.Simulate

 	Bonfire.Tag.Tagged

 	Bonfire.Tag.TextContent.Formatter

 	Bonfire.Tag.TextContent.Process

 	Bonfire.Tag.Web.Routes

 	Bonfire.Tags.Acts.AutoBoost

 	Bonfire.Telemetry

 	Bonfire.Telemetry.Metrics

 	Bonfire.Telemetry.Storage

 	Bonfire.Telemetry.SystemMonitor

 	Bonfire.Testing

 	Bonfire.Testing.InsecurePW

 	Bonfire.Upcycle

 	Bonfire.Upcycle.IntentLive.GraphQL

 	Bonfire.Upcycle.MapLive.GraphQL

 	Bonfire.Upcycle.ResourceLive.GraphQL

 	Bonfire.Upcycle.Web.HomeLive.GraphQL

 	Bonfire.Upcycle.Web.InventoryLive.GraphQL

 	Bonfire.Upcycle.Web.Routes

 	Bonfire.Upcycle.Web.TransfersLive.GraphQL

 	Federation

 	ActivityPub

 	ActivityPub.Actor

 	ActivityPub.Config

 	ActivityPub.Config.Error

 	ActivityPub.Federator

 	ActivityPub.Federator.APPublisher

 	ActivityPub.Federator.Adapter

 	ActivityPub.Federator.Fetcher

 	ActivityPub.Federator.HTTP

 	ActivityPub.Federator.HTTP.Connection

 	ActivityPub.Federator.HTTP.RateLimit

 	ActivityPub.Federator.HTTP.RequestBuilder

 	ActivityPub.Federator.HTTP.RetryAfter

 	ActivityPub.Federator.HTTP.Tesla

 	ActivityPub.Federator.Publisher

 	ActivityPub.Federator.Transformer

 	ActivityPub.Federator.WebFinger

 	ActivityPub.Federator.Worker

 	ActivityPub.Federator.Workers.PublisherWorker

 	ActivityPub.Federator.Workers.ReceiverWorker

 	ActivityPub.Federator.Workers.RemoteFetcherWorker

 	ActivityPub.Fixtures

 	ActivityPub.Instances

 	ActivityPub.Instances.Instance

 	ActivityPub.MRF

 	ActivityPub.MRF.SimplePolicy

 	ActivityPub.Object

 	ActivityPub.Pruner

 	ActivityPub.Pruner.PruneDatabaseWorker

 	ActivityPub.Queries

 	ActivityPub.Safety.Containment

 	ActivityPub.Safety.Encryption

 	ActivityPub.Safety.HTTP.Signatures

 	ActivityPub.Safety.Keys

 	ActivityPub.Utils

 	ActivityPub.Web

 	ActivityPub.Web.ActivityPubController

 	ActivityPub.Web.ActorView

 	ActivityPub.Web.Endpoint

 	ActivityPub.Web.ErrorHelpers

 	ActivityPub.Web.ErrorView

 	ActivityPub.Web.IncomingActivityPubController

 	ActivityPub.Web.LayoutView

 	ActivityPub.Web.ObjectView

 	ActivityPub.Web.Plugs.DigestPlug

 	ActivityPub.Web.Plugs.EnsureHTTPSignaturePlug

 	ActivityPub.Web.Plugs.FetchHTTPSignaturePlug

 	ActivityPub.Web.Plugs.HTTPSignaturePlug

 	ActivityPub.Web.Plugs.MappedSignatureToIdentityPlug

 	ActivityPub.Web.RedirectController

 	ActivityPub.Web.Router

 	ActivityPub.Web.Telemetry

 	ActivityPub.Web.UserSocket

 	ActivityPub.Web.WebFingerController

 	Icons

 	Iconify

 	Iconify.Icon

 	Iconify.MaterialSymbols.CalendarMonth

 	Utilities

 	AbsintheClient

 	AbsintheClient.Helpers

 	ConsoleHelpers

 	DaisyTheme

 	DummyAdapter

 	Entrepot

 	Entrepot.Ecto

 	Entrepot.Ecto.Type

 	Entrepot.Errors.InvalidLocator

 	Entrepot.Errors.InvalidStorage

 	Entrepot.Locator

 	Entrepot.Storage

 	Entrepot.Storages.Disk

 	Entrepot.Storages.RAM

 	Entrepot.Storages.S3

 	Entrepot.Upload

 	Entrepot.Uploader

 	Import2Alias

 	Import2Alias.CallerTracer

 	Import2Alias.Server

 	Nebulex.DiskAdapter

 	Nebulex.DiskAdapter.DiskCacheHelper

 	Paginator

 	Paginator.Page

 	Paginator.PageInfo

 	UserAuthLiveMount

 	Mix Tasks

 	mix bonfire.account.new

 	mix bonfire.extension.compile

 	mix bonfire.extension.copy_migrations

 	mix bonfire.extension.new

 	mix bonfire.full_docs

 	mix bonfire.load_testing

 	mix bonfire.localise.extract

 	mix bonfire.release

 	mix bonfire.secrets

 	mix bonfire.user.admin.promote

 	mix bonfire.user.new

 	mix bonfire.widget.new

 	mix import2alias

Bonfire Networks

Bonfire is an open-source framework for building federated digital spaces where people can gather, interact, and form communities online.
[image: Bonfire wallpaper]
Info
This project is in the beta stage - you're welcome to try out it out (specifically the social features in the classic flavour), but APIs may still change and no guarantees are given about stability. You can keep track of progress

 Development setup - Bonfire v0.9.10-classic-beta.169

Development setup

Info
These instructions are for hacking on Bonfire. If you wish to deploy in production, please refer to our deployment guide instead.

Hello, potential contributor! :-)
This is a work in progress guide to getting up and running as a developer. Please ask questions in the issue tracker if something is not clear and we'll try to improve it.
Happy hacking!

 Status: beta - have fun and provide feedback 🙏

Bonfire is currently beta software. While it's fun to play with it, we would not recommend running any production instances (meaning not using it for your primary fediverse identity) yet because it's not quite ready for that today.

 System Requirements

	Just: a handy tool (a make alternative) to run commands defined in ./justfile.

 Download

Either way, you need to first clone this repository and change into the directory and then do some configuration:
$ git clone https://github.com/bonfire-networks/bonfire-app bonfire
$ cd bonfire

 Configure

 Pick a flavour

Bonfire is a flexible platform that powers a variety of social networks. The first thing you have to choose is which app (or "flavour") you want to hack on:
	classic ("Bonfire Social", a basic social network that interoperates with the fediverse)
	community (for topics and groups)
	open-science (for next-gen scientific communities)
	coordination (for coordinating around tasks and projects)
	cooperation (for building cooperative economic networks)

Note that at the current time, the core team are focusing most of their efforts on the classic flavour and this is where we recommend you start.
So for example if you want to run the classic flavour run:
export FLAVOUR=classic

You may also want to put this in the appropriate place in your system so your choice of flavour is remembered for next time (eg. ~/.bashrc or ~/.zshrc)

 Choose your development environment

You can choose to run bonfire in a variety of ways, from fully managed via docker-compose, to bare metal with local postgres and elixir, to a combination of the two, we also offer the possibility to run Bonfire with nix.

 Easy

The easy way consist in using bare-metal elixir, and docker-managed tooling, database & search index, recommended for active development.
Info
Note: the simplest way to handle dependencies is using a tool like mise or asdf to setup the environment (simply run mise install in the root directory).

Dependencies:
	Recent versions of Elixir (1.15+) and OTP/erlang (25+)

	yarn

	Recent versions of Docker & docker-compose

	Make sure you've set the env to indicate your choice

export WITH_DOCKER=easy

You may also want to put this in the appropriate place in your system so your choice of flavour is remembered for next time (eg. ~/.bashrc or ~/.zshrc)

 All containers

Fully managed via docker-compose, recommended when you're first exploring and don't want to install Elixir.
NOTE: not recommended on MacOS, as it is significantly slower.

Dependencies
	Recent versions of Docker & docker-compose
	Make sure you've set the environment variable to indicate your choice:

export WITH_DOCKER=total

You may also want to put this in the appropriate place in your system so your choice of flavour is remembered for next time (eg. ~/.bashrc or ~/.zshrc)

 Bare-metal

Info
Note: you can use a tool like mise or asdf to setup the environment (run mise install in the root directory). You will still need to install Postgres and Meili seperately though.

	Dependencies:
	Recent versions of Elixir (1.15+) and OTP/erlang (25+)
<!-- - Recent versions of Rust and Cargo -->
	yarn
	Postgres 12+ (or rather Postgis if using the bonfire_geolocate extension)
	Meili Search (optional)

	If you want search capabilities, you'll also need to setup a Meili server and set the relevant env variables as well.

	Make sure you've set the environment variable to indicate your choice

export WITH_DOCKER=no

You may also want to put this in the appropriate place in your system so your choice of flavour is remembered for next time (eg. ~/.bashrc or ~/.zshrc)

 Nix

You can also choose to use nix to setup your development environment.
Dependencies:
	Run a recent version of Nix or NixOS: https://nixos.org/download.html
	Enable Flakes: https://nixos.wiki/wiki/Flakes#Installing_flakes
	Install direnv through nix if you don't have the tool already: nix profile install nixpkgs#direnv and add it to your shell: https://direnv.net/docs/hook.html
	Clone the bonfire-app repo if you haven't already and allow direnv to use environment variables:git clone https://github.com/bonfire-networks/bonfire-app
cd `bonfire-app`
direnv allow

The tool direnv is necessary for the nix setup as the nix shell environment will use variables defined on .envrc to set itself up.
Note: when you run direnv allow on the bonfire-app directory for the first time, nix will automatically fetch the dependencies for bonfire. The process will take a while as it's downloading everything needed to use the development environment. Afterwards you will be able to use just fine. Proceeding times you enter the directory, the shell with automatically set up for your use without downloading the packages again.
You will need to update the db directory which is automatically created by nix the first time you initialized the shell with direnv allow. You can do so with the following steps:
	Update props.nix to the settings you want.
	Run just nix-db-init to create the database and user for postgres defined on props.nix.
	Modify the .env file to comment out all POSTGRES_* variables. These are populated automatically by nix. So if the variables are set here, you may get issues with overriding your settings in props.nix when using bonfire.
	You can now proceed to Hello World!

Note: if you ever want to shut off the postgres server in nix, simply run the nix-db targets in just:
stop postgres server running locally
just nix-db stop
start postgres server running locally
just nix-db start

 Configure

Run just config to initialise the needed config.
just config

Then you can edit the config for the current flavour in ./.env
For example, you can set TEST_LOG_LEVEL=debug in your .env to show full debug logs when running unit tests.

The only required config to startup bonfire are the secrets for sessions/cookies (SECRET_KEY_BASE, SIGNING_SALT, ENCRYPTION_SALT), you can generate strings for these by running:
just secrets

 Light a fire!

From a fresh checkout of this repository, this command will fetch the app's dependencies and setup the database (the same commands apply for all three options above):
just setup-dev
This command will take a while to complete. Soon we will streamiline the setup process to be more lightway, bear with us for the moment.
You should now be able to run the app with:
just dev
Read more about the available just commands in the just commands page.

 Onboarding

 Getting Started

The back-end server runs on port 4000 (TCP) by default. Access it by navigating to http://localhost:4000/ in your web browser.

 Creating an account

To create an account, go to http://localhost:4000/signup and enter your email address and password.
When running the server locally and signing up for the first time, you won't need a confirmation email. However, for any future signups know you can find the confirmation link in the server logs.
You can also sign up via CLI by entering something like this in your app's Elixir console: Bonfire.Me.make_account_only("my@email.net", "my pw")

 Admin permissions

The first user registered on the platform is automatically granted Admin permissions.

 Successful onboarding

After successfully creating and confirming your account, you should see an empty dashboard.
That's it! You have now successfully onboarded and can start using the application.

 The Bonfire environment

We like to think of bonfire as a comfortable way of developing software - there are a lot of conveniences built in once you know how they all work. The gotcha is that while you don't know them, it can be a bit overwhelming. Don't worry, we've got your back.
	Architecture - an overview of the stack and code structure.
	Bonfire-flavoured Elixir - an introduction to the way we write Elixir.
	Bonfire's Database: an Introduction - an overview of how our database is designed.
	Boundaries - an introduction to our access control system.

Note: these are still at the early draft stage, we expect to gradually improve documentation over time.

 Documentation

The code is somewhat documented inline. You can generate HTML docs (using Exdoc) by running just docs.

 Additional information

	./extensions/ is used to hack on local copies of Bonfire extensions. You can clone an extension from its git repo and use the local version during development, eg: just dep-clone-local bonfire_me https://github.com/bonfire-networks/bonfire_me

	./forks/ is used to hack on local copies of any other dependencies.

	You can migrate the DB when the app is running (also runs automatically on startup): Bonfire.Common.Repo.migrate

	You can generate a dependency graph using just xref-graph which will generate a DOT file at docs/ (if Graphviz is installed it will also generate an SVG visualisation using dot).

 Usage under Windows (WSL, MSYS or CYGWIN)

By default, the justfile requires symlinks, which can be enabled with the help of this link.
See the pull request adding WSL support for details about usage without symlinks.

 Troubleshooting

 EACCES Permissions Error

If you get a permissions error when following any of the steps, run the following command and it should be fixed:
cd bonfire && sudo chown -R yourusername:yourusername .

Note that the command should be modified so your shell is pointing to wherever you have bonfire installed. If you are already in the bonfire directory then you only need to worry about running the chown portion of the command.

 Unable to access Postgres database

If you are getting any :nxdomain errors, check if you have any firewalls that may be blocking the port on your system.
For example, if you are running UFW (a lot of Linux distros do), run the following command to allow access to port 4000:
sudo ufw allow 4000

 (Mix) Package fetch failed

Example:
** (Mix) Package fetch failed and no cached copy available (https://repo.hex.pm/tarballs/distillery-2.0.12.tar)
In this case, distillery (as an example of a dependency) made a new release and retired the old release from hex. The new version (2.0.14) is quite close to the version we were depending on (2.0.12), so we chose to upgrade:
mix deps.update distillery

This respects the version bounds in mix.exs (~> 2.0), so increment that if required.

 (DBConnection.ConnectionError) tcp recv: closed

Example:
** (DBConnection.ConnectionError) tcp recv: closed (the connection was closed by the pool, possibly due to a timeout or because the pool has been terminated)
In this case, the seeds were unable to complete because a query took too long to execute on your machine. You can configure the timeout to be larger in the dev environment:
	Open config/dev.exs in your editor.
	Find the database configuration (search for Bonfire.Common.Repo).
	Add timeout: 60_000 to the list of options:

config :bonfire, Bonfire.Common.Repo,
 timeout: 60_000,
 [...]

 Compilation errors like (ArgumentError) could not load module Needle.ULID due to reason :unavailable or (ArgumentError) could not load module Poison.Encoder due to reason :unavailable

This seems to be an issue with the order of compilation, you can usually work around it by cleaning the deps it complains about, eg: just deps-clean needle_ulid or just deps-clean poison or just deps-clean jason

 Hosting guide - Bonfire v0.9.10-classic-beta.169

Hosting guide

A short guide to running Bonfire in a production environment and setting up a digital space connected to the fediverse.
Warning
Bonfire is currently beta software. While it's fun to play with it, we would not recommend running any production instances yet (meaning not using it for your primary fediverse identity) because it's not quite ready for that today.

These instructions are for setting up Bonfire in production. If you want to run the backend in development, please refer to our Installation guide instead.

 Security Warning

We recommend only granting an account to people you trust to minimise the attack surface. Accordingly, Bonfire ships with public registration disabled. The admin panel has an invite facility.

 Step 1 - Decide how you want to deploy and manage the app

 Co-op Cloud

Install using Co-op Cloud (recommended) which is an alternative to corporate cloud services built by tech co-ops, and provides handy tools for setting up and managing many self-hosted free software tools using ready-to-use "recipes". Very useful if you'd like to host Bonfire alongside other open and/or federated projects.
	Install Abra on your machine
	Set up a server with co-op cloud
	Use the Bonfire recipe and follow the instructions there, including editing the config in the env file at ~/.abra/servers/your_server/your_app.env (see prepare the config for details about what to edit)
	Run the abra deploy command and done!

 Docker containers

	Install dependencies.

The easiest way to manage the docker image is using just commands.
The docker-compose.release.yml uses config/prod/.env to launch a container with the necessary environment variables along with its dependencies, currently that means an extra postgres container, along with a reverse proxy (Caddy server, which you may want to replace with nginx or whatever you prefer).
Make sure you have Docker, with the compose plugin, and just installed:
$ docker version
Docker Engine - Community - 23.0.1

$ docker compose version
Docker Compose version v2.16.0

$ just --version
just 1.13.0
...

	Clone this repository and change into the directory:

git clone --depth 1 https://github.com/bonfire-networks/bonfire-app.git bonfire && cd bonfire

	Specify what flavour you want to run in production:

The first thing to do is choose what flavour of Bonfire (eg. classic, community, or cooperation) you want to deploy, as each flavour uses different Docker images and set of configs. For example if you want to run the classic flavour:
	export MIX_ENV=prod FLAVOUR=classic WITH_DOCKER=yes

You may also want to put this in the appropriate place in your system so your choice of flavour is remembered for next time (eg. ~/.bashrc or ~/.zshrc)
	Run just config to initialise some default config and then edit the config in the ./.env file (see prepare the config for details about what to edit).

Now that your tooling is set up, you have the choice of using pre-built images or building your own. For example if your flavour does not have a prebuilt image on Docker Hub, or if you want to customise any of the extensions, you can build one yourself.

Using pre-built Docker images (easy mode)
	The image entry in docker-compose.release.yml will by default use the image on Docker Hub which corresponds to your chosen flavour (see step 1 above for choosing your flavour).

You can see the images available per flavour, version (we currently recommend using the latest tag), and architecture at https://hub.docker.com/r/bonfirenetworks/bonfire/tags
	Try running the app!

Custom Docker build
Building your own Docker image is useful if you want to make code changes or add your own extensions.
Dockerfile.release uses the multistage build feature to just the image as small as possible. It generates the OTP release which is later copied into the final image packaged in an Alpine linux container.
There is a justfile with relevant commands (make sure set the MIX_ENV=prod env variable):
	just rel-build-locked which builds the docker image of the latest release
	just rel-build which builds the docker image, including local changes to any cloned extensions in ./extensions/
	just rel-tag adds the "latest" tag to your last build, so that it will be used when running

Once you've built and tagged your image, you may need to update the image name in docker-compose.release.release.yml to match (either your local image name if running on the same machine you used for the build, or a remote image on Docker Hub if you pushed it) and then follow the same steps as for option A1.
For production, we recommend to set up a CI workflow to automate this, for an example you can look at the one we currently use.
Finally, try running the app!
Running with Docker
	Start the docker containers with docker-compose:

just rel-run
Run this at the prompt:
bin/bonfire remote to enter Elixir's iex environment
Bonfire.Common.Repo.migrate to initialise your database
The backend should now be running at http://localhost:4000/. Yay, you're up and running!
	If that worked, start the app as a daemon next time:

just rel-run-bg
(Alternatively, just rel-run-bg db if you want to run the backend + db but not the web proxy, or just rel-run-bg db search if you want to run the full-text search index.)

 Bare-metal

Running a custom build without Docker.
	Install dependencies.

	Postgres (or Postgis) version 12 or newer
	just
	Elixir version 1.15+ with OTP 25+ (see the Dockerfile to double check the versions we're currently using). If your distribution only has an old version available, check Elixir's install page or use a tool like mise (run mise install in this directory) or asdf.

	Clone this repository and change into the directory:

git clone --depth 1 https://github.com/bonfire-networks/bonfire-app.git bonfire && cd bonfire

	Specify what flavour you want to run in production:

The first thing to do is choose what flavour of Bonfire (eg. classic, community, or cooperation) you want to deploy, as each flavour uses different Docker images and set of configs. For example if you want to run the classic flavour:
	export FLAVOUR=classic MIX_ENV=prod WITH_DOCKER=no

You may also want to put this in the appropriate place in your system so your choice of flavour is remembered for next time (eg. ~/.bashrc or ~/.zshrc)
	Run just config to initialise some default config and then edit the config in the ./.env file (see prepare the config for details about what to edit).

	Run just rel-build to create an elixir release. This will create an executable in your _build/prod/rel/bonfire directory. Note that you will need just to pass in the .env file to the executable, like so: just cmd _build/prod/rel/bonfire/bin/bonfire <bonfire command>. Alternatively, this file can be sourced by source .env instead. We will be using the bin/bonfire executable as called from just from here on.

	Running the release

	Create a database, and a user, fill out the .env with your credentials and secrets

	You will need to use just in order to pass the .env file to the executable. This can be accomplished by running just cmd _build/prod/rel/bonfire/bin/bonfire <bonfire command>. Just works from the root directory of the justfile, not your current directory.

	If you’re using RDS or some other locked down DB, you may need to run CREATE EXTENSION IF NOT EXISTS citext WITH SCHEMA public; on your database with elevated privileges.

	You can check if your instance is configured correctly and get to the iex console by running bin/bonfire start

	The migrations should automatically run on first boot, but if you run into troubles the migration command is: Bonfire.Common.Repo.migrate() in the iex console.

	To run the instance as a daemon, use bin/bonfire start daemon. Yay, you're up and running!

	Adding HTTPS

The common and convenient way for adding HTTPS is by using a reverse proxy like Nginx or Caddyserver (the latter of which is bundled as part of the docker compose setup).
Caddyserver and other servers can handle generating and setting up HTTPS certificates automatically, but if you need TLS/SSL certificates for nginx, you can look get some for free with letsencrypt. The simplest way to obtain and install a certificate is to use Certbot.. Depending on your specific setup, certbot may be able to get a certificate and configure your web server automatically.
If you've built from source, you should point the nginx root directory to be _build/prod/rel/bonfire/lib/bonfire-[current-version]/priv/static

 Nix

This repo contains an experimental Flake and Nix module. These are not ready for production.
Here are the detailed steps to deploy it:
	run a recent version of Nix or NixOS: https://nixos.wiki
	enable Flakes: https://nixos.wiki/wiki/Flakes#Installing_flakes
	add sandbox = false in your nix.conf
	fetch and build the app and dependencies: nix run github:bonfire-networks/bonfire-app start_iex
	add it as an input to your system flake.
	add an overlay to just the package available
	add the required configuration in your system

Your flake.nix file would look like the following. Remember to replace myHostName with your actual hostname or however your deployed system is called.
{
 inputs.bonfire.url = "github:bonfire-networks/bonfire-app/main";
 outputs = { self, nixpkgs, bonfire }: {
 overlay = final: prev: with final;{
 # a package named bonfire already exists on nixpkgs so we put it under a different name
 elixirBonfire = bonfire.packages.x86_64-linux.default;
 };
 nixosConfigurations.myHostName = nixpkgs.lib.nixosSystem {
 system = "x86_64-linux";
 modules = [
 {
 environment.systemPackages = [agenix.defaultPackage.x86_64-linux];
 nixpkgs.overlays = [self.overlay];
 }
 ./myHostName.nix
 bonfire.nixosModules.bonfire
];
 };
 };
}
Then your myHostName.nix would look like the following:
{ config, lib, pkgs, ... }:

{
 services.bonfire = {
 # you will additionally need to expose bonfire with a reverse proxy, for example caddy
 port = 4000;
 package = pkgs.elixirBonfire;
 dbName = "bonfire";
 # the environment should contain a minimum of
 # SECRET_KEY_BASE
 # SIGNING_SALT
 # ENCRYPTION_SALT
 # RELEASE_COOKIE
 # have a look into nix/module.nix for more details
 # the way to deploy secrets is beyond this readme, but I would recommend agenix
 environmentFile = "/run/secrets/bonfireEnv";
 dbSocketDir = "/var/run/postgresql";
 };
	
	# this is specifically for a reverse proxy, which is primarily used for SSL certs
	services.ngnix = {
		enable = true;
		forceSSL = true;
		enableACME = true;
		virtualHosts."myHostName".locations.proxyPass = "http://localhost:4000";
	};
	
	# You will need to accept ACME's terms and conditions if you haven't elsewhere in your configuration
	security.acme.defaults.email = "you@myHostName.com";
	security.acme.acceptTerms = true;

 # this is uniquely for database backup purposes
 # replace myBackupUserName with the user name that will do the backups
 # if you want to do backups differently, feel free to remove this part of the config
 services.postgresql = {
 ensureDatabases = ["bonfire"];
 ensureUsers = [{
 name = "myBackupUserName";
 ensurePermissions = { "DATABASE bonfire" = "ALL PRIVILEGES"; };
 }];
 };
}

 Preparing the config (in .env)

 Config keys you should pay special attention to:

The app needs these environment variables to be configured in order to work.
	FLAVOUR should reflect your chosen flavour
	HOSTNAME (your domain name, eg: bonfire.example.com)
	PUBLIC_PORT (usually 443)
	MAIL_DOMAIN and MAIL_KEY and related keys to configure transactional email, for example set MAIL_BACKEND=mailgun and sign up at Mailgun and then configure the domain name and key (you may also need to set MAIL_BASE_URI if your domain is not setup in EU, as the default MAIL_BASE_URI is set as https://api.eu.mailgun.net/v3).
	SMTP is supported as well, through the following env vars MAIL_SERVER (smtp domain of the mail server)
MAIL_DOMAIN (the bit after the @ in your email)
MAIL_USER
MAIL_PASSWORD
MAIL_FROM
MAIL_PORT (optional)
MAIL_SSL (optional)

	UPLOADS_S3_BUCKET and the related API key and secret for uploads. WARNING: If you want to store uploads in an object storage rather than directly on your server (which you probably want, to not run out of space), you need to configure that up front, otherwise URLs will break if you change it later. See config/runtime.exs for extra variables to set if you're not using the default service and region (which is Scaleway Paris).

 Secret keys for which you should put random secrets.

You can run just secrets to generate some for you.
	SECRET_KEY_BASE
	SIGNING_SALT
	ENCRYPTION_SALT
	POSTGRES_PASSWORD
	MEILI_MASTER_KEY

 Further information on config

In the ./config/ (which is a symbolic link to the config of the flavour you choose to run) directory of the codebase, there are following config files:
	config.exs: default base configuration, which itself loads many other config files, such as one for each installed Bonfire extension.
	prod.exs: default extra configuration for MIX_ENV=prod
	runtime.exs: extra configuration which is loaded at runtime (vs the others which are only loaded once at compile time, i.e. when you build a release)
	bonfire_*.exs: configs specific to different extensions, which are automatically imported by config.exs

You should not have to modify the files above. Instead, overload any settings from the above files using env variables or in ./.env. If any settings in the .exs config files are not available in env or in the instance settings UI, please open an issue or PR.

 Running the app

NOTE: If you are running in a restricted environment such as Amazon RDS, you will need to execute some sql against the database before migrations can run: CREATE EXTENSION IF NOT EXISTS citext;

By default, the backend listens on port 4000 (TCP), so you can access it on http://localhost:4000/ (if you are on the same machine). In case of an error it will restart automatically.
Once you've signed up, you will automatically be an instance admin if you were the first to register.
You can sign up via CLI by entering something like this in your app's Elixir console: Bonfire.Me.make_account_only("my@email.net", "my pw")

 Handy commands

	just update to update to the latest release of Bonfire
	just rel-run Run the app in Docker, in the foreground
	just rel-run-bg Run the app in Docker, and keep running in the background
	just rel-stop Stop the running release
	just rel-shell Runs a simple shell inside of the container, useful to explore the image

Once in the shell, you can run bin/bonfire with the following commands:
Usage: bonfire COMMAND [ARGS]
The known commands are:
	start Starts the system
	start_iex Starts the system with IEx attached
	daemon Starts the system as a daemon
	daemon_iex Starts the system as a daemon with IEx attached
	eval "EXPR" Executes the given expression on a new, non-booted system
	rpc "EXPR" Executes the given expression remotely on the running system
	remote Connects to the running system via a IEx remote shell
	restart Restarts the running system via a remote command
	stop Stops the running system via a remote command
	pid Prints the operating system PID of the running system via a remote command
	version Prints the release name and version to be booted

There are some useful database-related release tasks under EctoSparkles.Migrator. that can be run in an iex console (which you get to with just rel.shell followed by bin/bonfire remote, assuming the app is already running):
	migrate runs all up migrations
	rollback(step) roll back to step X
	rollback_to(version) roll back to a specific version
	rollback_all rolls back all migrations back to zero (caution: this means losing all data)

You can also directly call some functions in the code from the command line, for example:
	to migrate: docker exec bonfire_web bin/bonfire rpc 'Bonfire.Common.Repo.migrate'
	to just yourself an admin: docker exec bonfire_web bin/bonfire rpc 'Bonfire.Me.Users.make_admin("my_username")'

 Admin tools

	LiveDashboard for viewing real-time metrics and logs at /admin/system/
	Oban logs for viewing queued jobs (e.g. for processing federated activities) /admin/system/oban_queues
	LiveAdmin for browsing data in the database at /admin/system/data
	Orion for dynamic distributed performance profiling at /admin/system/orion
	Web Observer as an alternative way to view metrics at /admin/system/wobserver

 Troubleshooting

Some common issues that may arise during deployment and our suggestions for resolving them.
WebSocket connections not establishing behind a reverse proxy
If you are running Bonfire behind your own reverse proxy (e.g. nginx), you might experience issues with WebSocket connections not establishing. WebSocket connections require specific configuration to work, in nginx the following configuration is necessary for websockets to work:
location /live/websocket {
 proxy_pass http://127.0.0.1:4000;

 # these configurations are necessary to proxy WebSocket requests
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
}

 Bonfire Changelog - Bonfire v0.9.10-classic-beta.169

Bonfire Changelog

 [0.3.5-beta (2022-09-23)]

 Added

	Coordination MVP #445 by mayel & ivanminutillo
	UI to enable/disable extensions in settings #448
	Static page generator #444
	Publish creation of sub-topic in the topic's feed #439 by mayel

 Changed

	Refactor navs/sidebars to use dynamic navigation & widgets provided by extensions #447

 Other

	When I reply to a task, the activity in the feed does not show the parent activity #449
	Use same composer for create post / topic / create a new list / create task

 [0.3.4-beta.8 (2022-08-26)]

 Added

	Remember position in timeline #392 by mayel
	Should be able to click on a notification to see the related activity #412 by mayel
	Actions when someone clicks on follow/boost/like/reply buttons on a profile or feed while logged out #441
	Combine duplicate posts #396 by mayel

 Changed

	User preferences missing a consistent UX structure #430
	Bug: pop-ups from compose box are hidden if close to edge #394
	reset the CW field after posting #378
	On mobile, there should be an obvious way to reply to a single post when viewing it by itself #371
	Alerts and feedback messages need to adopt a solid pattern #305

 Fixed

	i can't see what i'm typing past a certain amount of text. Like rivht now i dont' see what i'm typing. Might be some typos then^^ #425
	Bug: When you switch user it sometimes stays on the switch user page #377 by mayel

 Other

	Make push notification system more solid #180
	Test/fix/improve graceful degradation (usage without JS, or without a LiveView websocket, i.e. when logged out) #365 by mayel
	use @prop in Surface views/components instead of e(assigns, :prop, default) and declare defaults in props or mount/1 #414

 [0.3.4-beta.6 (2022-08-19)]

 Changed

	3 options for smart input (sidebar, modal, floating) and improve responsive (modal on small screens) #443
	Improve feeds async loading #437 by mayel
	Improve media/link attachments #440

 Fixed

	Show and count only local users in user directory #438 by mayel

 [0.3.4 (2022-08-09)]

 Added

	Define & implement granular role & permission system for instance administration and moderation #406

 [0.3.3 (2022-08-02)]

 Added

	Define & implement granular role & permission system for instance administration and moderation #406

 [0.3.2 (2022-07-30)]

 Added

	Pagination topics list & feeds within topics #431
	Check boundaries of a topic when tagging and if allowed auto-boost the tagged object in the topic's outbox #428
	Show followed topics on a list #424
	Topic settings #423
	Topic activity preview #422
	Browse topics #421
	Tag something (eg. post/user) with a topic at any time (depending on boundaries) #416
	Tag a post with a topic when writing a new post (or reply) #415
	CRUD topics #410
	Create a users directory #159

 Changed

	Optimise LiveView rendering #426
	Allow us to scroll from anywhere #391

 Other

	Add unique key to encircle #248
	Database Question #3
	Being able to change activity type from the composer #429
	use created and extra_info mixins on Category #433
	check boundaries for edit and archive topic #434

 0.3.1-beta.9 (2022-07-22)

 Fixed

	BUG:Responsive, navigation goes under the mobile bottom tab #420 by ivanminutillo

 0.3.1-beta (2022-07-19)

 Added

	Circles & flexible boundaries #223 by mayel & ivanminutillo
	Compose box at the bottom of the screen as an alternative to the standard microblogging input box #419
	"Compact layout" in user preferences #418
	Fetch metadata of links included in a post and show previews (of images, videos, etc) in feeds #314

 Changed

	Pasting images into the editor should upload them #411
	Bug: When starting from the feed page, clicking back would exit the site #400
	/write page was missing the boundary selector #398
	Keep me logged in #395
	Font size is too small in compose window #388
	UI: moved topbar in the header to sidebar #362
	Improved responsive UI for use on small screens

 Fixed

	Bug: some notifications / live feed updates were making all other activities in the feed disappear #383 by mayel
	Bug: followed/followers pages remained empty despite having followed people #373 by mayel
	Bug: followed activity missing the person (in main feeds) #372 by mayel
	Bug: follow notification clears the home feed except for the "new follow" post #366 by mayel
	Bug: images attached to a post should appear in the feed #364

 Add a new widget - Bonfire v0.9.10-classic-beta.169

Add a new widget

Widgets are reusable components that encapsulate data and provide context-specific information to users based on the pages they are currently visiting. They are typically placed in the right sidebar (refers to the Design Guidelines section to learn more about Bonfire user experience), and developers can define which widgets should appear on each page and in what order.
Developers can include options for users to enable, disable, or rearrange the order of widgets when possible.
A widget usually consists of a title and data formatted in various ways, such as links, data visualizations, actions, or information fetched from third-party apps. In this section, we will create a new widget that utilizes the user's location (if provided) and the bonfire_geolocate library to obtain the correct coordinates. These coordinates will then be used to retrieve the location's weather information using an external library. Additionally, we will create a setting that allows users to optionally include the widget on their profile.
This example is simple yet meaningful because it touches upon different parts of the Bonfire framework during the tutorial. The code for this widget is available here.
[image: weather widget]

 Let’s code!

The first step is to identify the most appropriate extension for this widget. In this case, we can include the widget in the bonfire_geolocate extension, which already handles all the necessary logic for dealing with geolocations.
Widgets are typically included in lib/web/components/widgets. Bonfire uses Surface on the frontend, so we'll create two files:
	widget_forecast_live.ex
	widget_forecast_live.sface

This forecast widget is a stateless component, meaning it won't handle any internal state. Therefore, the widget_forecast_live.ex code will be quite basic:
defmodule Bonfire.Geolocate.WidgetForecastLive do
 use Bonfire.UI.Common.Web, :stateless_component

 prop location, :string, default: nil
end

We use :stateless_component, a function that wraps the Surface.Component and includes a list of helpers widely used across most components.
Since we want to include the widget on the user profile, we can gather the location data from there, so we define the location prop.
Widgets are wrapped in a WidgetBlockLive component that takes care of injecting a style and the basic prop as the title. The initial implementation of our widget_forecast_live.sface looks like this:
<Bonfire.UI.Common.WidgetBlockLive widget_title={e(@location, "")}>
 hello world
</Bonfire.UI.Common.WidgetBlockLive>

To see our widget, we need to include it in a page. Widgets are included in our right sidebar and are defined within a prop called sidebar_widgets, which is a list that includes guest and user lists (respectively, the widgets to show when the user is visiting a page while not logged in or when the user is logged in).
We'll include our widget in the logged list, specifying it is in the secondary widget section. The final look of our sidebar_widget prop looks like this:
sidebar_widgets = [
 users: [
 secondary: [
 Bonfire.Geolocate.WidgetForecastLive, [location: "Naples, Italy"]
]
]
]

We'll include our widget in the user profile page, located in the Bonfire.UI.Me extension, a library that deals with all the views related to user profiles and settings.
The Bonfire.UI.Me.ProfileLive mount function looks like:
 def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(LiveHandler.default_assigns(is_nil(current_user_id(assigns(socket)))))}
 end

The default_assigns function includes data needed for dealing with multiple kinds of interactions and permissions. It also fetches the user from the database and ensures all the data is loaded correctly. The location data is fetched in profiles_live_handler.ex:95, and the widget is included in profiles_live_handler.ex:274.

 Adding Settings

To ensure the user can decide whether they want to include the widget when visiting any user page, we're creating a new setting that optionally shows the widget based on user input.
In profiles_live_handler.ex:274, the widget is preceded by weather_widget_enabled, a boolean that controls whether the widget should be displayed or not. It makes use of the Settings.get function. You can learn more about defining and returning settings in our Add an Extension Settings section.
We're adding the settings in the edit_profile_info_live.sface component (we may later refactor this to add the setting in the defined extension, but this is still a work in progress):
<form data-scope="set-weather" phx-change="Bonfire.Common.Settings:set">
 <Bonfire.UI.Common.SettingsToggleLive
 name="Weather"
 description={l("Show the Weather widget on user profile")}
 keys={[Bonfire.Geolocate, :weather]}
 scope={:user}
 />
 </form>

At this point, we should be able to see our basic weather widget on our profile page and decide to switch it on and off.
What remains is to include the logic for returning and displaying the weather. We will use the Forecastr library, which is already used in our application and added in the bonfire extension.
The Forecastr library makes use of the Pirate Weather service, so we need a Pirate Weather API KEY. You can generate one on pirateweather.net and add it at the bottom of your .env file:
PIRATE_WEATHER_API=***********************

The final component code looks like:
{#if e(@location, nil)}
 <Bonfire.UI.Common.WidgetBlockLive widget_title={e(@location, "")}>
 {#case Forecastr.forecast(:today, e(@location, nil),
 units: :metric,
 renderer: Forecastr.Renderer.JSON
)}
 {#match {:ok,
 %{
 "description" => weather,
 "id" => weather_id,
 "temp" => temp,
 "name" => weather_location
 }}}
 <div
 class="flex items-center gap-3"
 title={l("%{weather} in %{location}", weather: weather, location: weather_location)}
 >
 <Iconify.iconify icon={"meteocons:#{weather_id}"} class="w-16 h-16" />
 <div class="flex flex-col">
 {temp}°
 {weather}
 </div>
 </div>
 {#match _}
 {/case}
 </Bonfire.UI.Common.WidgetBlockLive>
{/if}

 Next Steps

Although this weather widget is relatively basic, it significantly enhances the user experience by providing relevant metadata fetched from external services. This example demonstrates the potential for integrating additional information and functionality into widgets to create a more engaging and informative user interface.
To further improve this widget, developers can consider including more data points, such as:
	Current moon position and phase
	Daily amount of daylight hours
	Sunrise and sunset times
	Extended weather forecasts
	Weather alerts and notifications

By incorporating these additional features, the widget can provide users with a more comprehensive overview of their location's weather and astronomical information, making it a valuable addition to their profile page.

 Bonfire Navigation Sidebar - Bonfire v0.9.10-classic-beta.169

Bonfire Navigation Sidebar

 Overview

The Bonfire framework includes the navigation on the left sidebar, which can include pages from various extensions. Different navigation menus can be defined based on the current page (e.g., Explore and Settings pages have distinct menus).

 Key Concepts

	Create new navigation menus
	Add pages to existing menus
	Override default navigation
	Use custom navigation components

 Creating a New Navigation Menu

To create a new menu for your extension:
	Use the declare_extension macro in one of your extension views (typically the extension homepage).
	Configure your extension with options like name, icon, description, and navigation menu.

declare_extension("Your Extension Name",
 icon: "🎆",
 description: "A short description to display in the extension settings",
 default_nav: [
 ExtensionName.Path.YourPageLive,
 ExtensionName.Path.AnotherPageLive,
 # Add more pages as needed
]
)
	For each page in default_nav, use the declare_nav_link macro to define link properties:

declare_nav_link(l("Your Page"),
 page: "your_page",
 href: "/your_page",
 icon: "ph:search",
 icon_active: "ph:search-fill"
)

 Using the Default Navigation Menu

To use the default navigation menu instead of your extension's menu:
	In each view's mount function, set the nav_items property:

def mount(params, session, socket) do
 {:ok,
 socket
 |> assign(
 nav_items: Bonfire.Common.ExtensionModule.default_nav()
)
 }
end

 Overriding Default Navigation with a Custom Menu

To override the default navigation for specific pages:
	Create a custom navigation menu component.
	Use the declare_nav_component("sidebar description") macro on the custom menu.
	In each view's mount function, set the nav_items property:

def mount(params, session, socket) do
 {:ok,
 socket
 |> assign(
 nav_items: [ExtensionName.Path.YourPageLive.declared_nav()]
)
 }
end

 Add a new extension settings - Bonfire v0.9.10-classic-beta.169

Add a new extension settings

Bonfire extensions can define settings that will be available to the users of the extension. These settings can be used to configure the behavior of the extension.
TODO

 Create a new extension - Bonfire v0.9.10-classic-beta.169

Create a new extension

Extensions in Bonfire are powerful tools that allow you to extend the functionality and features of your application.
This guide is perfect for developers who are looking to contribute new features or capabilities to the Bonfire ecosystem.
By the end of this page, you should have a solid understanding of how to develop and integrate a new extension in Bonfire, leveraging its modular architecture.

 Create your Bonfire extension

	To start building your own extension, you can utilise our custom mix generator task. Simply navigate to the Bonfire app root folder in your terminal and type:

just mix bonfire.extension.new *your_extension_name*
This command creates a new directory in ./extensions named *your_extension_name*, complete with all the necessary files and scaffolding.
	Add your extension to ./config/deps.flavour.path (on a new line, it should look similar to your_extension_name = "extensions/your_extension_name") to enable it locally.

	Once your new extension is set up, you're ready to dive into coding. Consider these possible steps to enhance your extension:

	Implement extension-specific fake functions for testing purposes.
	Create extension-specific database migrations.
	Add any dependencies you need to deps.git and/or deps.hex.
	If your extension includes new pages, you need to link them in the main router.

Info
Bonfire's Phoenix router module is found in the bonfire extension. Refer to the Routing page to learn how to add new routes.

	After coding your initial features, create an empty repository on your preferred Git platform. Then, commit and push your local changes to make your work accessible and open for collaboration:

git add .
git commit -m "light my fire"
git branch -M main
git remote add origin [your-remote-repository-url]
git push -u origin main
	When you're ready for other people upstream to use your extension, add it to ./config/deps.git (including the branch name).

And just like that, you've successfully created and prepared your first Bonfire extension and shared with the community 🔥

 Create a new page - Bonfire v0.9.10-classic-beta.169

Create a new page

TODO

 Make changes to an extension - Bonfire v0.9.10-classic-beta.169

Make changes to an extension

This tutorial guides you through the process of editing an existing Bonfire extension. We'll cover how to clone, enable, and contribute to an extension, ensuring you can test and implement your changes effectively.
Ideal for developers looking to modify and enhance Bonfire's functionalities.
By the end, you'll be adept at including and working with extensions in the Bonfire development environment.
In Bonfire, in order to edit an existing extension and test the changes you need to set up the extension in your development environment. The process is quite straightforward:

 Fork the extension

If you want to share your changes to the extension, you may want to first fork it on Github.
Use just dep-clone-local *[dep]* *[repo]* to clone an extension from its Git repository. Replace <i>dep</i> with the extension name and <i>repo</i> with the full URL of your fork. The cloned extension will be cloned in ./extensions:
just dep-clone-local bonfire_social https://github.com/bonfire-networks/bonfire_social

 Enable the extension

After cloning, choose to use the local version by editing ./config/deps.flavour.path (create the file in the ./flavours/[flavour]/config/ directory if it doesn’t exist).
The format to follow is the following: dep_name = "dep_path".
To disable a local extension, comment or delete its line in ./config/deps.flavour.path.
Use just dev to run the app with changes hot-reloading.
./config/deps.flavour.path
bonfire_me = "./extensions/bonfire_me"
bonfire_boundaries = "./extensions/bonfire_boundaries" # disabled local copy

 Make and test your changes

You can now make your edits to the ./extensions, run the app with just dev and run tests with just test-watch.

 Push changes

You can push your changes remotely, use Bonfire's helpers like just contrib if you need to commit files that belong to multiple extensions or just update-dep *dep* for a specific one (e.g.just update-dep bonfire_me).

 Great works 🎉🎉🎉

You're now equipped to contribute to Bonfire extensions, enhancing the framework's capabilities. You can do so by opening a PR on Github from your forked extension. Your contributions are vital to the Bonfire community, and we encourage you to keep exploring and improving the project.

 What is a Bonfire extension - Bonfire v0.9.10-classic-beta.169

What is a Bonfire extension

Extensions in Bonfire are collections of code that introduce new features and enhance the platform's functionality, or explore a different user experience for an existing feature.
They can range from adding entirely new pages, such as bonfire_invite_links which lets admins create and share invites with usage limit and expiration date, to implementing specific components or widgets.
An example is bonfire_editor_milkdown, which integrates a markdown-first editor for publishing activities.
Extensions are versatile, they can implement their own schema, database, logic, and components, or they can leverage existing fields, context functions, and UI components, or more commonly, a combination of both.

 Using extensions

In order to make changes to extensions, you need to clone them locally. As you may imagine, we have a just command for that.
just dep-clone-local **[extension name]** **[extension url]**
This command (eg. just dep-clone-local bonfire_ui_social https://github.com/bonfire-app/bonfire_ui_social) will create a local copy of the extension in ./extensions/bonfire_ui_social.
If the extension is enabled locally, you will see an entry in config/deps.flavour.path with the path to the local extension:
bonfire_ui_social = "extensions/bonfire_ui_social"
If you want to disable the extension, you can remove the entry from config/deps.flavour.path
Info
config/deps.flavour.path is a symlink of the file flavours/[flavour]/deps.flavour.path. Ensure this file exist in the flavour you are working on, or create one to begin use your extensions locally.

When the extension is enabled, Bonfire will use the code in extensions/ instead of the one in deps/.
We will dive more into the creation and the lifecycle of extensions in the next sections.

 Extension helpers

Given Bonfire modularity, you will likely find yourself combining functions from several extensions when using the framework.
A significant portion of its codebase is included in extensions, each serving specific purposes.
Moreover, extensions often utilise code from other extensions.
For instance, bonfire_common and bonfire_ui_common provide a suite of helpers to ease a good amount of tasks.
When using extensions functions, we need a way to ensure the app will not break if the extension is not enabled.
Bonfire provides a few built-in components that allows users to optionally inject components or functions from different extensions.
Bonfire.Common.Utils.maybe_apply
	Helpers for calling hypothetical functions in other modules. Returns the result of calling a function with the given arguments, or the result of fallback function if the primary function is not defined (by default just logging an error message).

Bonfire.Common.Utils.maybe_apply(Bonfire.Social.Graph, :maybe_applications, [],
 fallback_return: []
)
Bonfire.UI.Common.Modular.StatefulComponent
	A built-in component that allows users to optionally inject dynamic live components into a Surface template.
Based on Surface.Components.Dynamic.LiveComponent to which it adds the ability to check if a module is enabled and even to swap it out for another in settings.

<StatefulComponent
 :if={current_user(@__context__)}
 module={maybe_component(Bonfire.Boundaries.Web.MyCirclesLive, @__context__)}
 id="circles"
scope={@scope}
/>
Bonfire.UI.Common.Modular.StatelessComponent
	A built-in component that allows users to optionally inject dynamic functional components into a Surface template.
Based on Surface.Components.Dynamic.Component to which it adds the ability to check if a module is enabled and even to swap it out for another in settings.

<StatelessComponent
 selected_tab={@selected_tab}
 module={maybe_component(Bonfire.UI.Me.SettingsViewsLive.InstanceSummaryLive, @__context__)}
/>

 Project structure - Bonfire v0.9.10-classic-beta.169

Project structure

TODO

 Routing - Bonfire v0.9.10-classic-beta.169

Routing

The Bonfire routing system provides a modular and extensible way to define routes for different parts of your application.
It allows developers to include routes directly from their extensions based on their availability and configuration.
The routes are organized into pipelines and scopes to handle authentication and authorization requirements.
The Router module is declared in the router.ex file in the bonfire extension.
The Bonfire.Web.Router.Routes module defines all the routes for active Bonfire extensions that will be included in the Bonfire app. It also includes routes for GraphQl and AcitvityPub specific endpoints.
In order to add a new route to Bonfire, you need to create a Routes module in your extension. It is usually named as Project.ExtensionName.Web.Routes eg. Bonfire.UI.Social.Routes
The Routes file follows the standard Phoenix/Liveview syntax and structure.

 Add a new route

To add a new routes to the Router, you need to add include it to the main Router.
Info
At the moment, you need a workaround to be able to enable the bonfire dependency locally: clone it in your ./extensions folder and then add it to yourdeps.flavour.path file.

Once you have the bonfire dep enabled locally, include your new extension router with use_if_enabled(Project.ExtensionName.Web.Routes) in the Bonfire.Web.Router.Routes file.

 What is a Bonfire flavour? - Bonfire v0.9.10-classic-beta.169

What is a Bonfire flavour?

 Working with flavour - Bonfire v0.9.10-classic-beta.169

Working with flavour

test

 Bonfire Architecture - Bonfire v0.9.10-classic-beta.169

Bonfire Architecture

 Hacking

Bonfire is an unusual piece of software, developed in an unusual way. It originally started as a project to create a generic federation library/framework, while building an app for educators to share and collaborate on learning resources with their peers, and has been forked and evolved a lot since then.
Hacking on it is actually pretty fun. The codebase has a unique feeling to work with and we've relentlessly refactored to manage the ever-growing complexity that a distributed social networking toolkit implies. That said, it is not easy to understand without context, which is what this document is here to provide.

 Design Decisions

Feature goals:
	Flexibility for developers and users.
	Extreme configurability and extensibility.
	Integrated federation with the existing fediverse.

Operational goals:
	Easy to set up and run.
	Light on resources for small deployments.
	Scalable for large deployments.

 Stack

Our main implementation language is Elixir, which is designed for building reliable systems. We have almost our own dialect.
We use the Phoenix web framework with LiveView and Surface for UI components and views.
Surface is a different syntax for LiveView that is designed to be more convenient and understandable to frontend developers, with extra compile time checks. Surface views and components are compiled into LiveView code (so once you hit runtime, Surface in effect doesn't exist any more).
Some extensions use the Absinthe GraphQL library to expose an API.

 The Bonfire Environment

We like to think of bonfire as a comfortable way of developing software - there are a lot of conveniences built in once you know how they all work. The gotcha is that while you don't know them, it can be a bit overwhelming. Don't worry, we've got your back.

 Code Structure

The code is broadly composed namespaces such as these, many of which are packaged as "extensions" which live in separate git repositories, which are included in the app by way of mix dependencies:
	Bonfire.* - Core application logic (very little code).
	Bonfire.*.* - Bonfire extensions (eg Bonfire.Posts) containing mostly context modules, APIs, and routes
	Bonfire.Data.* - Extensions containing database schemas and migrations
	Bonfire.UI.* - UI component extensions
	Bonfire.*.*.LiveHandler - Backend logic to handle events in the frontend
	Bonfire.Editor.* (pluggable text editors, eg. CKEditor for WYSIWYG markdown input)
	Bonfire.GraphQL.* - Optional GraphQL API
	Bonfire.Federate.* - Optional Federation hooks
	ActivityPub - ActivityPub S2S models, logic and various helper modules
	ActivityPub.Web - ActivityPub S2S REST endpoints, activity ingestion and push federation facilities
	ValueFlows.* - economic extensions implementing the ValueFlows vocabulary

Contexts are were we put any core logic. A context often is circumscribed to providing logic for a particular object type (e. g. Bonfire.Posts implements Bonfire.Data.Social.Post).
All Bonfire objects use an ULID as their primary key. We use the Needle library (with extra logic in Bonfire.Common.Needles) to reference any object by its primary key without knowing what type it is beforehand. This is very useful as it allows for example following or liking many different types of objects (as opposed to say only a user or a post) and this approach allows us to store the context of the like/follow by only storing its primary key (see Bonfire.Data.Social.Follow) for an example.
Context modules usually have one/2, many/2, and many_paginated/1 functions for fetching objects, which in turn call a query/2 function. These take a keyword list as filters (and an optional opts argument) allowing objects to be fetched by arbitrary criteria.
Examples:
Users.one(username: "bob") # Fetching by username
Posts.many_paginated(by: "01E9TQP93S8XFSV2ZATX1FQ528") # List a page of posts by its author
EconomicResources.many(deleted: true) # List any deleted resources
Context modules also have functions for creating, updating and deleting objects, as well as hooks for federating or indexing in the search engine.
Here is an incomplete sample of some of current extensions and modules:
	Bonfire.Me.Accounts (for managing and querying local user accounts)
	Bonfire.Me.Users (for managing and querying both local and remote user identities and profiles)
	Bonfire.Boundaries (for managing and querying circles, ACLs, permissions...)
	Bonfire.Social.FeedActivities, Bonfire.Social.Feeds and Bonfire.Social.Activities (for managing and querying activities and feeds)
	Bonfire.Posts and Bonfire.Social.PostContents (for managing and querying posts)
	Bonfire.Social.Threads (for managing and querying threads and comments)
	Bonfire.Social.Flags (for managing and querying flags)
	Bonfire.Social.Graph.Follows (for managing and querying follows)
	Bonfire.Classify (for managing and querying categories, topics, and the like)
	Bonfire.Tag (for managing and querying tags and mentions)
	Bonfire.Geolocate (for managing and querying locations and geographical coordinates)
	Bonfire.Quantify (for managing and querying units and measures)

Additional extensions, libraries, and modules
	Bonfire.Common and Bonfire.Common.Utils (stuff that gets used everywhere)
	Bonfire.Application (OTP application)
	Bonfire.Me.Characters (a shared abstraction over users, organisations, categories, and other objects that need to have feeds and behave as an actor in ActivityPub land)
	Bonfire.Federate.ActivityPub and ActivityPub (ActivityPub integration)
	Bonfire.Search (local search indexing and search API, powered by Meili)
	Bonfire.Mailer, Bonfire.Me.Mails, and Bamboo (for rendering and sending emails)
	Bonfire.Files, Waffle, TreeMagic and TwinkleStar (for managing uploaded content)
	Bonfire.GraphQL (GraphQL API abstractions)
	Queery and Bonfire.Repo.Query (Helpers for making queries on the database)
	Bonfire.Repo (Ecto repository)
	Exto (to extend DB schemas in config, especially useful for adding associations)
	AbsintheClient (for querying the API from within the server)

 General structure

	Bonfire app	A flavour running Bonfire.Application as supervisor	Configs assembled from extensions at flavour/$FLAVOUR/config
	Phoenix at Bonfire.Web.Endpoint	Routes assembled from extensions at Bonfire.Web.Router

	GraphQL schema assembled from extensions at Bonfire.GraphQL.Schema
	Database migrations assembled from extensions at flavour/$FLAVOUR/repo/migrations
	Data seeds assembled from extensions at flavour/$FLAVOUR/repo/seeds
	Extensions and libraries as listed in flavour/$FLAVOUR/config/deps.*	Extensions defining schemas and migrations (usually Bonfire.Data.*)	Schemas
	Migrations defined as functions in the schema modules in lib/
	Migration templates calling those functions in priv/repo/migrations which are then copied into an app flavour's migrations

	Extensions implementing features or groups of features (eg. Bonfire.Me)	Config template which is then copied into an app flavour's config (eg config/bonfire_me.exs)
	Contexts (eg Bonfire.Me.Users)	Sometimes LiveHandlers for handling frontend events in the backend (eg Bonfire.Me.Users.LiveHandler)

	Routes (eg Bonfire.UI.Me.Routes)	Controllers and/or Views (eg Bonfire.UI.Me.CreateUserController and Bonfire.UI.Me.CreateUserLive)

	API (eg Bonfire.Me.API.GraphQL), refer to GraphQL API documentation	Schemas
	Resolvers

	Sometimes Plugs (eg Bonfire.Web.Plugs.UserRequired and Bonfire.Web.LivePlugs.UserRequired)

	Other extensions or libraries (eg Needle or Bonfire.Common which are used by most other extensions)

 Naming

It is said that naming is one of the four hard problems of computer science (along with cache management and off-by-one errors). We don't claim our scheme is the best, but we do strive for consistency.

 Naming guidelines

	Module names mostly begin with Bonfire. unless they belong to a more generic library (eg Needle or ValueFlows)
	Everything within an extension begins with the context name and a . (eg Bonfire.Social.Migrations)
	Database schemas should be named in the singular (eg Bonfire.Data.Social.Post)
	Context modules are named in plural where possible (eg Bonfire.Posts)
	Other modules within a context begins with the context name and a . (eg Bonfire.Posts.LiveHandler)
	Modules use UpperCamelCase while functions use snake_case
	Acronyms in module names should be all uppercase (eg Bonfire.Social.APActivities)

 Federation libraries

 ActivityPub

This namespace handles the ActivityPub logic and stores AP activities. It is largely adapted Pleroma code with some modifications, for example merging of the activity and object tables and new actor object abstraction.
	ActivityPub contains the main API and is documented there.
	ActivityPub.Federator.Adapter defines callback functions for the AP library.

It also contains some functionality that isn't part of the AP spec but is required for federation:
	ActivityPub.Safety.Keys - Generating and handling RSA keys and signatures
	ActivityPub.Federator.WebFinger - Implementation of the WebFinger protocol
	ActivityPub.Federator.HTTP - Module for making HTTP requests (wrapper around tesla)
	ActivityPub.Instances - Module for storing reachability information about remote instances

Also refer to MRF documentation to learn how to rewrite or discard messages.

 ActivityPub.Web

This namespace contains the ActivityPub Server-to-Server REST API, the activity ingestion pipeline (ActivityPub.Federator.Transformer) and the push federation facilities (ActivityPub.Federator, ActivityPub.Federator.APPublisher and others). The outgoing federation module is designed in a modular way allowing federating through different protocols in the future.

 ActivityPub integration with Bonfire's application logic

The callback functions defined in ActivityPub.Federator.Adapter are implemented in Bonfire.Federate.ActivityPub.Adapter.
When implementing federation for a new object type it needs to be implemented for both directions:
for outgoing federation using the hooks in Bonfire.Federate.ActivityPub.Outgoing and for incoming federation using the hooks in Bonfire.Federate.ActivityPub.Incoming.

 Bonfire-flavoured Elixir - Bonfire v0.9.10-classic-beta.169

Bonfire-flavoured Elixir

Bonfire has a few libraries that are widely used in the codebase and make writing Elixir feel a little bit different. To help you get less confused by this, here's a guide on what we can call "bonfire-flavoured elixir"!
Please note this guide assumes you already know Elixir.

 Arrows

The Elixir |> ("pipe") operator is one of the things that seems to get people excited about elixir. Probably in part because you then don't have to keep coming up with function names. Unfortunately it's kind of limiting.
The moment you need to pipe a parameter into a position that isn't the first one, it breaks down and you have to drop out of the pipeline format or write a secondary function to handle it.
Not any more! By simply inserting ... where you would like the value to be inserted, Arrows will override where it is placed. This allows you to keep on piping while accommodating that function with the annoying argument order. Arrows was inspired by an existing library. Here is part of the test suite in lieu of examples:
defmodule ArrowsTest do
 use ExUnit.Case
 use Arrows

 def double(x), do: x * 2
 def double_fst(x, _), do: x * 2
 def double_snd(_, x), do: x * 2
 def add_snd_thd(_, x, y), do: x + y

 test "|>" do
 assert 4 == (2 |> double)
 assert 4 == (2 |> double())
 assert 4 == (2 |> double(...))
 assert 8 == (2 |> double(double(...)))
 assert 4 == (2 |> double_fst(1))
 assert 4 == (2 |> double_fst(..., 1))
 assert 8 == (2 |> double_fst(double(...), 1))
 assert 4 == (2 |> double_snd(1, ...))
 assert 8 == (2 |> double_snd(1, double(...)))
 assert 3 == (2 |> add_snd_thd(1, ..., 1))
 assert 4 == (2 |> add_snd_thd(1, ..., ...))
 assert 6 == (2 |> add_snd_thd(1, ..., double(...)))
 for x <- [:yes, 2, nil, false] do
 assert {:ok, x} == (x |> {:ok, ...})
 end
 end
end
A few little extra features you might notice here:
	You can move the parameter into a subexpression, as in 2 |> double_fst(double(...), 1) where double will be called before the parameter is passed to double_fst.
	You can use ... multiple times, substituting it in multiple places.
	The right hand side need not even be a function call, you can use any expression with

 Ok-pipe

Arrows also provides an ok-pipe operator, ~>, which only pipes into the next function if the result from the last one was considered a success. It's inspired by OK, but we have chosen to do things slightly differently so it better fits with our regular pipe.
	input	result	
	:-----------------------	:--------------	
	{:ok, x}	fun.(x)	
	{:error, e}	{:error, e}	
	nil	nil	
	x when not is_nil(x)	fun.(x)	

In the case of a function returning an ok/error tuple being on the left hand side, this is straightforward to determine. In the event of {:ok, x}, x will be passed into the right hand side to call. In the event of {:error, x}, the result will be {:error, x}.
We also deal with a lot of functions that indicate failure by returning nil. ~> tries to 'do what I mean' for both of these so you can have one pipe operator to rule them all. If nil is a valid result, you must thus be sure to wrap it in an ok tuple when it occurs on the left hand side of ~>.
|> and ~> compose in the way you'd expect; i.e. a ~> receiving an error tuple or nil will stop executing the rest of the chain of (mixed) pipes.

 Untangle

Untangle provides replacements for the macros in Elixir's Logger module and the IO.inspect function to output code location information. The first argument will be inspected and the second (where provided) will be used as a label:
iex(1)> import Untangle
Untangle
iex(2)> debug(:no, "the answer is") # log at debug
11:19:09.915 [debug] [iex:2] the answer is: :no
:no
iex(3)> dump(%{a: :map}, "it") # inspect something on stdout
[iex:3] it: %{a: :map}
%{a: :map}
When used in a code file, the location information becomes slightly more useful, e.g.:
[lib/test_untangle.ex:15@Test.Untangle.example/2] Here's an empty list: []
You may also notice from the iex output that it returns its first argument. This makes it ideal for
inserting into a pipeline for debugging purposes:
do_something()
|> debug("output of do_something/0")
When you are done debugging something, the location of the debug statement is already in the output so you know where to remove it or comment it out! Bliss!
You will find the codebase uses this a lot, though the debugs are frequently commented out. Just uncomment the ones that would help you with a particular debugging task and you're off.

 Error handling

Bonfire.Fail is an Exception handler, which you can use to stop the show anywhere in the code, e.g:
id = uid(object) || raise(Bonfire.Fail, :not_found)
You can use this special exception when you want to redirect the user to the login page rather than just show an error:
user = current_user(assigns) || raise(Bonfire.Fail.Auth, :needs_login)
Advantages include:
	standardised error messages (defaults are defined at https://github.com/bonfire-networks/bonfire_fail/blob/main/lib/runtime_config.ex#L16) which can be overridden in your app's config using config :bonfire_fail, :common_errors
	friendly error messages are defined in one place, which means no duplicated localisation efforts
	uses the elixir/OTP pattern of "let it crash"
	returns the correct HTTP code when applicable
	no need to wrap blocks in if/else or the like
	for users of the LiveView frontend, this will make the corresponding friendly error message appear in a flash overlay (if using Bonfire.UI.Common.LiveHandlers and/or Bonfire.UI.Common.undead/3)

 Design Guidelines - Bonfire v0.9.10-classic-beta.169

Design Guidelines

TODO

 Just commands - Bonfire v0.9.10-classic-beta.169

Just commands

Welcome to this guide on navigating the world of Bonfire development, is crafted especially for people taking their first steps in Bonfire or looking to refine their workflow.

 General Setup Related Commands

As you dive into developing your own extension or app with the Bonfire framework, you'll quickly encounter an array of dependencies and extensions to deal with. An extension that uses a function or a component from a different extension is not an exception, but rather a common pattern.
This setup means you might likely soon find yourself contributing to multiple extensions simultaneously. Navigating this landscape can be intimidating at first, but Bonfire provides tools to streamline the process.
They help you effortlessly synchronize the latest updates across different extensions or efficiently push your updates to all relevant repositories. Understanding these facilities is key to a smooth and productive development experience in the Bonfire ecosystem.
Most of these tools are driven by just and their code can be seen in the justfile (which is quite similar to a Makefile). Below is a small selection of the most used commands.
just
	Print a list of all possible just commands a short explanation for each.

just update
	Update the app and all extensions/forks, and run migrations. Use this command to ensure you're in sync with the most recent changes across your development environment.

just update-app
	This command updates the app along with Bonfire extensions located in ./deps. It's ideal for updating the app while excluding the extensions currently under development located in ./extensions.

just dep-clone *[dep]* *[repo]*
	Clone a git dependency and use the local version, eg: just dep-clone-local bonfire_me https://github.com/bonfire-networks/bonfire_me. Active extensions need to be added in ./config/deps.path (see the tutorial on how to fork an extension). To switch between local and remote dependencies, simply comment or uncomment the corresponding lines in this file.

just contrib
	Push all changes to the app and extensions in ./forks and ./extensions.

just contrib-release
	Push all changes to the app and extensions in ./forks, increment the app version number, and push a new version/release

just test
	Run tests of all extensions, or only specific tests, eg: just test extensions/bonfire_social or just test extensions/bonfire_social/test/social/boosts_test.exs

just test-watch *[path]*
	Run stale tests, and wait for changes to any module code, and re-run affected tests.

just test-federation-in-extensions *[path]*
	Test federation integration in your extension.

 Needle - Bonfire v0.9.10-classic-beta.169

Needle

One foreign key to rule them all and in the darkness, bind them. - Gandalf, paraphrased.

[image: hex.pm]
hexdocs

 Intro

Bonfire uses the excellent PostgreSQL database for most data storage. PostgreSQL allows us to make a wide range of queries and to make them relatively fast while upholding data integrity guarantees.
Postgres is a relational schema-led database - it expects you to pre-define tables and the fields in each table (represented in tabular form, i.e. as a collection of tables with each table consisting of a set of rows and columns). Fields can contain data or a reference to a row in another table.
This usually means that a field containing a reference has to be pre-defined with a foreign key pointing to a specific field (typically a primary key, like an ID column) in a specific table.
A simple example would be a blogging app, which might have a post table with author field that references the user table.
A social network, by contrast, is actually a graph of objects. Objects need to be able to refer to other objects by their ID without knowing their type.
A simple example would be likes, you might have a likes table with liked_post_id field that references the post table. But you don't just have posts that can be liked, but also videos, images, polls, etc, each with their own table, but probably do not want to have to add liked_video_id, liked_image_id, etc?
We needed the flexibility to have a foreign key that can reference any referenceable object. We call our system Needle.
This guide is a brief introduction to Needle. It assumes some foundational knowledge:
	Basic understanding of how relational databases like Postgresql work, in particular:
	Tables being made up of fields.
	What a primary key is and why it's useful.
	Foreign keys and relationships between tables (1 to 1, 1 to Many, Many to 1, Many to Many).
	Views as virtual tables backed by a SQL query.

	Basic understanding of Elixir (enough to follow the examples).

	Basic working knowledge of the Ecto database library (schema and migration definitions)

 What is Needle?

A means of foreign keying many tables in one field. Designed for highly interlinked data in highly dynamic schemata where tracking all the foreign keys is neither desired nor practical.
A universal foreign key is actually a hard problem. Many approaches are on offer with a variety of tradeoffs. If plugging into Bonfire's Needle-based core extensions isn't a requirement for you (i.e. you don't need to put things into feeds or use boundaries for access-control) should carefully consider a variety of approaches rather than just blindly adopting the one that fitted our project's needs the best!

 Identifying objects - the UID type

All referenceable objects in the system have a unique ID (primary key) whose type is the Needle.UID. UUIDv7 and ULIDs are a lot like standard UUID in that you can generate unique ones independently of the database. It's also a little different, being made up of two parts:
	The current timestamp, to millisecond precision.
	Strong random padding for uniqueness.

This means that it naturally sorts by time to the millisecond (close enough for us), giving us a performance advantage compared to queries ordered by a separate creation datetime field (by contrast, UUIDv4 is randomly distributed).
If you've only worked with integer primary keys before, you are probably used to letting the database dispense an ID for you. With ULID (or UUID), IDs can be known before they are stored, greatly easing the process of storing a graph of data and allowing us to do more of the preparation work outside of a transaction for increased performance.
In PostgreSQL, we actually store UUIDv7 and ULIDs as UUID columns, thanks to both being the same size (and the lack of specific column types shipping with postgresql). You mostly will not notice this because it's handled for you, but there are a few places it can come up:
	Ecto debug and error output may show either binary values or UUID-formatted values.
	Hand-written SQL may need to convert table IDs to the UUID format before use.

 It's just a table

The Needle system is mostly based around a single table represented by the Needle.Pointer schema with the following fields:
	id (UID) - the database-wide unique id for the object, primary key.
	table_id (UID) - identifies the type of the object, references Needle.Table.
	deleted_at (timestamp, default: null) - when the object was deleted.

Every object that is stored in the system will have a record in this table. It may also have records in other tables (handy for storing more than 3 fields about the object!).
A Table is a record of a table that may be linked to by a pointer. A Pointer is a pointer ID and a table ID.
With these two ingredients, we can construct a means of pointing to any table that has a Table entry.
But don't worry about Needle.Table for now, just know that every object type will have a record there so Needle.Pointer.table_id can reference it.

 Installation

Aside from adding the dependency, you will also need to write add a migration to set up the database before you can start writing your regular migrations:
defmodule MyApp.Repo.Migrations.InitPointers do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration

 def up(), do: inits(:up)
 def down(), do: inits(:down)

 defp inits(dir) do
 init_pointers_ulid_extra(dir) # this one is optional but recommended
 init_pointers(dir) # this one is not optional
 end
end
Note: Pointers is already a default dependency of most Bonfire extensions, so you shouldn't need to add the migration if building a new extension.

 Declaring Object Types

 Picking a table id

The first step to declaring a new type is picking a unique table ID in UID format.
You could just generate a random UID, but since these IDs are special, we tend to assign a synthetic UID that are readable as words so they stand out in debug output.
For example, the ID for the Feed table is: 1TFEEDS0NTHES0V1S0FM0RTA1S, which can be read as "It feeds on the souls of mortals". Feel free to have a little fun coming up with them, it makes debug output a little more cheery! The rules are:
	The alphabet is Crockford's Base32.
	They must be 26 characters in length.
	The first character must be a digit in the range 0-7.

To help you with this, the Needle.UID.synthesise!/1 method takes an alphanumeric binary and tries to return you it transliterated into a valid UID. Example usage:
iex(1)> Needle.UID.synthesise!("itfeedsonthesouls")

11:20:28.299 [error] Too short, need 9 chars.
:ok
iex(2)> Needle.UID.synthesise!("itfeedsonthesoulsofmortalsandothers")

11:20:31.819 [warn] Too long, chopping off last 9 chars
"1TFEEDS0NTHES0V1S0FM0RTA1S"
iex(3)> Needle.UID.synthesise!("itfeedsonthesoulsofmortals")
"1TFEEDS0NTHES0V1S0FM0RTA1S"
iex(4)> Needle.UID.synthesise!("gtfeedsonthesoulsofmortals")

11:21:03.268 [warn] First character must be a digit in the range 0-7, replacing with 7
"7TFEEDS0NTHES0V1S0FM0RTA1S"

 Virtual pointables ("virtuals")

Needle.Virtual is the simplest and most common type of object. Here's a definition of block:
defmodule Bonfire.Data.Social.Block do

 use Needle.Virtual,
 otp_app: :bonfire_data_social,
 table_id: "310CK1NGSTVFFAV01DSSEE1NG1",
 source: "bonfire_data_social_block"

 alias Bonfire.Data.Edges.Edge

 virtual_schema do
 has_one :edge, Edge, foreign_key: :id
 end
end
It should look quite similar to a mixin definition, except that we use Needle.Virtual this time (passing an additional table_id argument) and we call the virtual_schema macro.
The primary limitation of a virtual is that you cannot put extra fields on it. This also means that belongs_to is not generally permitted because it results in adding a field, while has_one and has_many work just fine as they do not cause the creation of fields in the schema.
This is not usually a problem, as extra fields can be put into mixins or multimixins as appropriate.
In all other respects, they behave like Pointables. You can have changesets over them and select and insert as usual.
Under the hood, a virtual has a writable view (in the above example, called bonfire_data_social_block). It looks like a table with just an id, but it's populated with all the ids of blocks that have not been deleted. When the view is inserted into, a record is created in the pointers table for you transparently. When you delete from the view, the corresponding pointers entry is marked deleted for you.

Before introducing Virtuals, we noticed it was very common to create Pointables with no extra fields just so we could use the Needle system. Virtuals are alternative for this case that requires less typing and provides a reduced overhead vs pointable (as they save the cost of maintaining a primary key in that table and the associated disk space).

 Pointables

The other, lesser used, type of object is called the Needle.Pointable. The major difference is that unlike the simple case of virtuals, pointables are not backed by views, but by tables.
When a record is inserted into a pointable table, a copy is made in the pointers table for you transparently. When you delete from the table, the the corresponding pointers entry is marked deleted for you. In these ways, they behave very much like virtuals. By having a table, however, we are free to add new fields.

Pointables pay for this flexibility by being slightly more expensive than virtuals:
	Records must be inserted into/deleted from two tables (the pointable's table and the pointers table).
	The pointable table needs its own primary key index.

The choice of using a pointable instead of a virtual combined with one or more mixins is ultimately up to you.
Here is a definition of a pointable type (indicating an ActivityPub activity whose type we don't recognise, stored as a JSON blob):
defmodule Bonfire.Data.Social.APActivity do

 use Needle.Pointable,
 otp_app: :bonfire_data_social,
 table_id: "30NF1REAPACTTAB1ENVMBER0NE",
 source: "bonfire_data_social_apactivity"

 pointable_schema do
 field :json, :map
 end
end
As you can see, to declare a pointable schema, we start by using Needle.Pointable, providing the name of our otp application, the source table's name in the database and our chosen sentinel UID.

We then call pointable_schema and define any fields we wish to put directly in the table. For the most part, pointable_schema is like Ecto's schema macro, except you do not provide the table name and let it handle the primary key.

If for some reason you wished to turn ID autogeneration off, you could pass autogenerate: false to the options provided when using Needle.Pointable.

 Adding re-usable fields

 Mixins - storing data about objects

Mixins are tables which contain extra information on behalf of objects. Each object can choose to
record or not record information for each mixin. Sample mixins include:
	user profile (containing a name, location and summary)
	post content (containing the title, summary, and/or html body of a post or message)
	created (containing the id of the object creator)

In this way, they are reusable across different object types. One mixin may (or may not) be used by any number of objects. This is mostly driven by the type of the object we are storing, but can also be driven by user input.
Mixins are just tables too! The only requirement is they have a UID primary key which references Needle.Pointer. The developer of the mixin is free to put whatever other fields they want in the table, so long as they have that primary-key-as-reference (which will be automatically added for you by the mixin_schema macro).
Here is a sample mixin definition for a user profile:
defmodule Bonfire.Data.Social.Profile do

 use Needle.Mixin,
 otp_app: :bonfire_data_social,
 source: "bonfire_data_social_profile"

 mixin_schema do
 field :name, :string
 field :summary, :string
 field :website, :string
 field :location, :string
 end
end
Mixin tables are not themselves pointable, so there is no need to specify a table id as when defining a pointable schema.

Aside from useing Needle.Mixin instead of Ecto.Schema and calling mixin_schema instead of
schema, pretty similar to a standard Ecto schema, right?
The arguments to use Needle.Mixin are:
	otp_app: the OTP app name to use when loading dynamic configuration, e.g. the current extension or app (required)
	source: the underlying table name to use in the database

We will cover dynamic configuration later. For now, you can use the OTP app that includes the module.

 Multimixins

Multimixins are like mixins, except that where an object may have 0 or 1 of a particular mixins, an object may have any number of a particular multimixin.
For this to work, a multimixin must have a compound primary key which must contain an id column referencing Needle.Pointer and at least one other field which will collectively be unique.
An example multimixin is used for publishing an item to feeds:
defmodule Bonfire.Data.Social.FeedPublish do

 use Needle.Mixin,
 otp_app: :bonfire_data_social,
 source: "bonfire_data_social_feed_publish"

 alias Needle.Pointer

 mixin_schema do
 belongs_to :feed, Pointer, primary_key: true
 end
end
Notice that this looks very similar to defining a mixin. Indeed, the only difference is the primary_key: true in this line, which adds a second field to the compound primary key.
This results in ecto recording a compound primary key of (id, feed_id) for the schema (the id is added for you as with regular mixins).

 Writing Migrations

Migrations are typically included along with the schemas as public APIs you can call within your project's migrations.

 Virtuals

Most virtuals are incredibly simple to migrate for:
defmodule Bonfire.Data.Social.Post.Migration do

 import Needle.Migration
 alias Bonfire.Data.Social.Post

 def migrate_post(), do: migrate_virtual(Post)

end
If you need to do more work, it can be a little trickier. Here's an example for block, which also creates a unique index on another table:
defmodule Bonfire.Data.Social.Block.Migration do

 import Ecto.Migration
 import Needle.Migration
 import Bonfire.Data.Edges.Edge.Migration
 alias Bonfire.Data.Social.Block

 def migrate_block_view(), do: migrate_virtual(Block)

 def migrate_block_unique_index(), do: migrate_type_unique_index(Block)

 def migrate_block(dir \\ direction())

 def migrate_block(:up) do
 migrate_block_view()
 migrate_block_unique_index()
 end

 def migrate_block(:down) do
 migrate_block_unique_index()
 migrate_block_view()
 end

end
Notice how we have to write our up and down versions separately to get the correct ordering of operations.

 Pointables

Migration example for a Pointable:
defmodule Bonfire.Data.Social.APActivity.Migration do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration
 alias Bonfire.Data.Social.APActivity

 defp make_apactivity_table(exprs) do
 quote do
 require Needle.Migration
 Needle.Migration.create_pointable_table(Bonfire.Data.Social.APActivity) do
 Ecto.Migration.add :json, :jsonb
 unquote_splicing(exprs)
 end
 end
 end

 defmacro create_apactivity_table, do: make_apactivity_table([])
 defmacro create_apactivity_table([do: body]), do: make_apactivity_table(body)

 def drop_apactivity_table(), do: drop_pointable_table(APActivity)

 defp maa(:up), do: make_apactivity_table([])
 defp maa(:down) do
 quote do: Bonfire.Data.Social.APActivity.Migration.drop_apactivity_table()
 end

 defmacro migrate_apactivity() do
 quote do
 if Ecto.Migration.direction() == :up,
 do: unquote(maa(:up)),
 else: unquote(maa(:down))
 end
 end

end
As you can see, this Pointable migration a little trickier to define than a Virtual because we wanted to preserve the ability for the user to define extra fields in config. There are some questions about how useful this is in practice, so you could also go for a simpler option:
defmodule MyApp.Repo.Migrations.Greeting do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration

 def up() do
 create_pointable_table(:greeting, "GREET1NGSFR0MD0CEXAMP1E000") do
 add :greeting, :text, null: false
 end
 end

 def down() do
 drop_pointable_table(:greeting, "GREET1NGSFR0MD0CEXAMP1E000")
 end
end
As you can see, it's pretty similar to defining a regular migration, except you use create_pointable_table and
drop_pointable_table. Notice that our sentinel UID makes an appearance again here. It's very important that these match what we declared in the schema.

 Mixins

Mixins look much like pointables:
defmodule Bonfire.Data.Social.Profile.Migration do

 import Needle.Migration
 alias Bonfire.Data.Social.Profile

 # create_profile_table/{0,1}

 defp make_profile_table(exprs) do
 quote do
 require Needle.Migration
 Needle.Migration.create_mixin_table(Bonfire.Data.Social.Profile) do
 Ecto.Migration.add :name, :text
 Ecto.Migration.add :summary, :text
 Ecto.Migration.add :website, :text
 Ecto.Migration.add :location, :text
 Ecto.Migration.add :icon_id, strong_pointer(Bonfire.Files.Media)
 Ecto.Migration.add :image_id, strong_pointer(Bonfire.Files.Media)
 unquote_splicing(exprs)
 end
 end
 end

 defmacro create_profile_table(), do: make_profile_table([])
 defmacro create_profile_table([do: {_, _, body}]), do: make_profile_table(body)

 # drop_profile_table/0

 def drop_profile_table(), do: drop_mixin_table(Profile)

 # migrate_profile/{0,1}

 defp mp(:up), do: make_profile_table([])

 defp mp(:down) do
 quote do
 Bonfire.Data.Social.Profile.Migration.drop_profile_table()
 end
 end

 defmacro migrate_profile() do
 quote do
 if Ecto.Migration.direction() == :up,
 do: unquote(mp(:up)),
 else: unquote(mp(:down))
 end
 end

end

 Multimixins

Similar to mixins:
defmodule Bonfire.Data.Social.FeedPublish.Migration do

 import Ecto.Migration
 import Needle.Migration
 alias Bonfire.Data.Social.FeedPublish

 @feed_publish_table FeedPublish.__schema__(:source)

 # create_feed_publish_table/{0,1}

 defp make_feed_publish_table(exprs) do
 quote do
 require Needle.Migration
 Needle.Migration.create_mixin_table(Bonfire.Data.Social.FeedPublish) do
 Ecto.Migration.add :feed_id,
 Needle.Migration.strong_pointer(), primary_key: true
 unquote_splicing(exprs)
 end
 end
 end

 defmacro create_feed_publish_table(), do: make_feed_publish_table([])
 defmacro create_feed_publish_table([do: {_, _, body}]), do: make_feed_publish_table(body)

 def drop_feed_publish_table(), do: drop_pointable_table(FeedPublish)

 def migrate_feed_publish_feed_index(dir \\ direction(), opts \\ [])
 def migrate_feed_publish_feed_index(:up, opts),
 do: create_if_not_exists(index(@feed_publish_table, [:feed_id], opts))
 def migrate_feed_publish_feed_index(:down, opts),
 do: drop_if_exists(index(@feed_publish_table, [:feed_id], opts))

 defp mf(:up) do
 quote do
 Bonfire.Data.Social.FeedPublish.Migration.create_feed_publish_table()
 Bonfire.Data.Social.FeedPublish.Migration.migrate_feed_publish_feed_index()
 end
 end

 defp mf(:down) do
 quote do
 Bonfire.Data.Social.FeedPublish.Migration.migrate_feed_publish_feed_index()
 Bonfire.Data.Social.FeedPublish.Migration.drop_feed_publish_table()
 end
 end

 defmacro migrate_feed_publish() do
 quote do
 if Ecto.Migration.direction() == :up,
 do: unquote(mf(:up)),
 else: unquote(mf(:down))
 end
 end

 defmacro migrate_feed_publish(dir), do: mf(dir)

end

 More examples

Take a look at a few of the migrations in our data libraries. Between them, they cover most
scenarios by now:
	bonfire_data_social
	bonfire_data_access_control
	bonfire_data_identity
	bonfire_data_edges (feat. bonus triggers)

If you want to know exactly what's happening, you may want to read the code for
Needle.Migration.

 Configuration and overrides

Every pointable or mixin schema is overrideable with configuration
during compilation (this is why using them requires an :otp_app to
be specified). For example, we could override Needle.Table (which
is a pointable table) thus:
config :needle, Needle.Table, source: "my_pointers_table"
The table_id is also configurable, but we don't recommend you change it.
In addition, all pointable and mixin schemas permit extension with Exto. See the Exto's docs for more information about how to extend schemas via configuration. You will probably at the very least want to insert some has_one for mixins off your pointables.

 Referencing Pointables

Ecto does not know anything about our scheme, so unless we specifically want something to reference one of the pointed tables, we typically belongs_to with Needle.Pointer. The table in which we do this does not itself need to necessarily be a Pointable.
defmodule MyApp.Foo do

 use Ecto.Schema

 # regular ecto table, not pointable!
 schema "hello" do
 belongs_to :pointer, Needle.Pointer # who knows what it points to?
 end
end
You may choose to reference a specific schema rather than Pointer if it
will only point to a single table. If you do this, you must ensure
that the referenced record exists in that table in the normal
way. There may be some performance benefit, we didn't benchmark it.
The migration is slightly more complex, we have to decide what type of
a pointer it is. Needle come in three categories:
	A strong pointer is not nullable and is deleted when the object it
points to is deleted.
	A weak pointer is nullable and is nilified when the object it points
to is deleted.
	An unbreakable pointer will raise when you attempt to delete the
object it points to.

	Type	Nullable?	On Delete
	Strong	No	Cascade
	Weak	Yes	Set Null
	Unbreakable	No	Raise

In this case we will use a strong pointer, because we want it to be
deleted if the pointed object is deleted.
defmodule MyApp.Repo.Migrations.Hello do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration

 def change() do
 create_if_not_exists table(:hello) do
 add :pointer, strong_pointer(), null: false
 add :greeting, :text, null: false
 end
 end
end
If you are pointing to a specific table instead of pointer,
strong_pointer/1 allows you to pass the name of that module
(strong_pointer/0 calls this with Needle.Pointer).

 Dereferencing Pointables

It is common that even though you have a universal foreign key, you
will want to issue different queries based upon the type that is being
pointed to. For this reason, it is up to you to decide how to perform
an onward query.
Needle.Pointers.schema/1 turns a Pointer into an Ecto schema module name
you can switch against. Needle.Pointers.plan breaks down a list of Needle
into a map of ids keyed by schema module. It is handy to define some
functions in your (non-library) application that can load any type of
pointer in given contexts.

 Inserting data

 Elixir-based logic

The practical result of needle is that it pushes a certain amount of
validation and consistency logic back into elixir land. It is
therefore your elixir code's responsibility to ensure that data is
inserted into the appropriate mixin tables when inserting a pointable
object and to manage deletions as appropriate.
When assembling queries with mixin tables, pay careful attention to
the type of join you are performing. An inner join is explicitly
asking not to be shown objects that do not have a record for that
mixin. You quite possibly wanted to left join.

 Querying Needle

Since Pointer has a table, you can use its table_id field to
filter by pointed type. Needle.Tables.id!/1 (or ids!/1 for a
list) can be used to obtain the IDs for a table or tables.

 Tradeoffs

All solutions to the universal primary key problem have tradeofs. Here
are what we see as the deficiencies in our approach:
	It forces a UUIDv7 or ULID on you. This is great for us, but not
everyone. They both expose a timestamp with millisecond precision.
If the time of creation of a resource is sensitive information for
your purposes, they may not going to be suitable for you.
	Ecto has no knowledge of the specialty of Pointer,
e.g. Repo.preload does not work and you need to specify a join
condition to join through a pointer. Use our functions or add extra
associations with exto configuration.
	Dereferencing a list of needle requires a select query per table
type that occurs in the input set.
	Reliance on user attention. You have to follow the instructions
correctly to make the system work at all.
	There is likely some performance impact from postgres not
understanding the relationships between the various tables
properly. It's hard to gauge and we haven't even tried.

These are not likely to change. If you're going to pick
this library, do so in the full knowledge of the tradeoffs it makes.
Alternatives include (I'm sure you can think of others):
	Storing the table name in a second column alongside every foreign key.
	A compound datatype of id and table name.
	Byte/String manipulation tricks.
	Evil SQL hacks based upon compile time configuration.

While we have our gripes with this approach, once you've gotten the
hang of using it, it works out pretty well for most purposes and it's
one of the simpler options to work with.

 Copyright and License

Copyright (c) 2020 needle Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Summary

 Functions

 Bonfire.Mailer - Bonfire v0.9.10-classic-beta.169

Bonfire.Mailer

Email delivery is a crucial component of many web applications, including your Bonfire instance. It's used for various purposes such as:
	Sending signup confirmation emails
	Delivering password reset links
	Notifying users of new messages or activities
	Sending alerts to administrators or moderators

To set up email delivery for your Bonfire instance, you'll need to choose an email delivery method and configure it properly. This guide will help you through that process.

 Before You Begin

	Choose Email Delivery Method and/or Provider: You may choose to sign up with one of the email service providers listed in this guide. Each provider has its own pricing, features, and delivery rates.

	Domain Configuration: To ensure reliable email delivery and avoid spam filters, you should configure your email-related DNS settings for your instance's domain name. This typically involves setting up:
	MX (Mail Exchanger) records
	SPF (Sender Policy Framework) records
	DKIM (DomainKeys Identified Mail) records
	DMARC (Domain-based Message Authentication, Reporting, and Conformance) records

Your chosen email provider should provide instructions on how to set these up for your domain.
	Environment Variables: Bonfire uses environment variables for configuration. You'll need to set these variables in your deployment environment or in a .env file if you're running Bonfire locally or using Co-op Cloud.

For all email delivery methods, you'll need to set the following environment variables:
	MAIL_BACKEND environment variable to choose your email delivery method or provider.
	MAIL_DOMAIN or HOSTNAME: Your domain name
	MAIL_FROM: The email address from which emails will be sent (this should match the domain name you set up with SPF/DKIM/DMARC, which will usually be your instance's domain)

 Choosing an Email Delivery Method

 1. Default Behaviour: Direct SMTP Delivery

If no specific email configuration is set, Bonfire will attempt to deliver emails directly to the recipients' SMTP servers. Here's what you need to know about this default behaviour:
	What it means: Your server will try to connect directly to the recipient's email server (e.g. a provider such as Gmail or an organisation's own mail server) to deliver the email.

	Pros: It requires no additional configuration and can work for basic setups.

	Cons: This method is often unreliable and prone to several issues:
	Spam Filters: Emails sent this way are more likely to be marked as spam or rejected entirely.
	Deliverability: Many recipient servers may flat-out reject IP addresses not properly set up for email sending.
	DNS Configuration: Without proper DNS records (SPF, DKIM, DMARK, etc.), your emails are more likely to be treated as suspicious.
	IP Reputation: If your server's IP address isn't established as a legitimate email sender, deliverability will suffer.

	Important: While this default method can work for testing or in very small-scale scenarios, it is strongly recommended to configure a proper email delivery service for any production use of Bonfire. If you want to try this method anyway, make sure to configure SPF, DKIM, DMARK, etc. for your instance domain name and IP address.

 2. Managed Email Service Providers

These providers offer comprehensive email delivery services, usually featuring analytics, bounce handling, high deliverability rates, etc.
Note: the information about free tiers and pricing are only meant to serve as a rough indication of the options available and may be outdated or inaccurate (we'd welcome PRs with any updates of course). Please check with each provider's website for more details.

Brevo (formerly Sendinblue)
	Website: brevo.com
	Free Tier: 300 emails per day, then $15+/month or pay-as-you-go ($59 per 10,000 emails) MAIL_BACKEND=brevo
MAIL_KEY=your_brevo_api_key
MAIL_FROM=email@instance.domain

Mailjet
	Website: mailjet.com
	Free Tier: 200 emails per day, then $17+/monthMAIL_BACKEND=mailjet
MAIL_KEY=your_mailjet_api_key
MAIL_PRIVATE_KEY=your_mailjet_secret_key
MAIL_FROM=email@instance.domain

SMTP2GO
	Website: smtp2go.com
	Free Tier: 200 emails per day (up to 1,000 emails per month), then $10+/monthMAIL_BACKEND=SMTP2GO
MAIL_KEY=your_smtp2go_api_key
MAIL_FROM=email@instance.domain

Mailtrap
	Website: mailtrap.io
	Free Tier: 200 emails per day (up to 1,000 emails per month), then $15+/monthMAIL_BACKEND=mailtrap
MAIL_KEY=your_mailtrap_api_key
MAIL_FROM=email@instance.domain

Mailgun
	Website: www.mailgun.com
	Free Tier: 100 emails per day, then $15+/monthMAIL_BACKEND=mailgun
MAIL_KEY=your_mailgun_api_key
MAIL_BASE_URI=https://api.eu.mailgun.net/v3
MAIL_FROM=email@instance.domain
Note: The MAIL_BASE_URI depends on your Mailgun registration region. The default is set to EU, adjust if necessary.

Twilio SendGrid
	Website: sendgrid.com
	Free Tier: 100 emails per day, then $20+/monthMAIL_BACKEND=sendgrid
MAIL_KEY=your_sendgrid_api_key
MAIL_FROM=email@instance.domain

Postmark
	Website: postmarkapp.com
	Free Tier: 100 emails per month, then $15+/monthMAIL_BACKEND=postmark
MAIL_KEY=your_postmark_api_key
MAIL_FROM=email@instance.domain

Zoho ZeptoMail
	Website: zoho.com
	First 10,000 emails are free, then €2,50 per 10,000 emailsMAIL_BACKEND=zepto
MAIL_KEY=your_zeptomail_api_key
MAIL_FROM=email@instance.domain

Scaleway
	Website: scaleway.com
	No free tier, pay-as-you-go pricing (€2.50 per 10,000 emails)MAIL_BACKEND=scaleway
MAIL_KEY=your_scaleway_api_key
MAIL_PROJECT_ID=your_scaleway_project_id
MAIL_PRIVATE_KEY=your_scaleway_secret_key
MAIL_FROM=email@instance.domain

Gmail
	Website: gmail.com
	Free Tier: 500 emails per dayMAIL_BACKEND=gmail
MAIL_KEY=your_gmail_api_key
MAIL_FROM=email@instance.domain
^ OAuth2 access token with `gmail.compose` scope
Note: Using Gmail for sending application email is generally not recommended for production use.

MailPace
	Website: mailpace.com
	No free tier, starts at £2.50 per month for up to 1,000 emailsMAIL_BACKEND=mailpace
MAIL_KEY=your_mailpace_api_key
MAIL_FROM=email@instance.domain

Mandrill (Mailchimp Transactional)
	Website: mailchimp.com
	No free tier, pay-as-you-go pricingMAIL_BACKEND=mandrill
MAIL_KEY=your_mandrill_api_key
MAIL_FROM=email@instance.domain

Bird / SparkPost
	Website: bird.com
	No free tier, pay-as-you-go pricingMAIL_BACKEND=sparkpost
MAIL_KEY=your_sparkpost_api_key
MAIL_BASE_URI=https://api.eu.sparkpost.com
MAIL_FROM=email@instance.domain
Note: The MAIL_BASE_URI depends on your SparkPost registration region. The default is set to EU, adjust if necessary.

Sendcloud (China)
	Website: sendcloud.net
	Free Tier: 10 emails per dayMAIL_BACKEND=sendcloud
MAIL_KEY=your_sendcloud_api_key
MAIL_USER=your_sendcloud_api_user
MAIL_FROM=email@instance.domain

SocketLabs
	Website: socketlabs.com
	No free tierMAIL_BACKEND=socketlabs
MAIL_KEY=your_socketlabs_api_key
MAIL_SERVER=your_socketlabs_server_id
MAIL_PRIVATE_KEY=your_socketlabs_api_key
MAIL_FROM=email@instance.domain

Campaign Monitor
	Website: campaignmonitor.com
	No free tier, pay-as-you-go pricingMAIL_BACKEND=campaign_monitor
MAIL_KEY=your_campaign_monitor_api_key
MAIL_FROM=email@instance.domain

Amazon AWS SES
	Website: aws.amazon.com
	Free Tier: 3,000 message / month (only for the first 12 months, and extra AWS charges may still apply)

Amazon SES can be configured in two ways:
	Using existing AWS credentials (if already configured for S3 file storage, you can simplify configuration and use the same AWS credentials for both file storage and email delivery):
MAIL_BACKEND=aws
MAIL_FROM=email@instance.domain
Note: This method will automatically use the credentials set by UPLOADS_S3_ACCESS_KEY_ID and UPLOADS_S3_SECRET_ACCESS_KEY. No additional configuration is needed if these are already set up for a Bonfire extension (such as Bonfire.Files) which uses S3 file storage.

	Using dedicated credentials, if you don't use AWS for S3 file storage or you want to use different AWS accounts for file storage and email delivery:
MAIL_BACKEND=aws
MAIL_KEY=your_aws_access_key_id
MAIL_PRIVATE_KEY=your_aws_secret_access_key
MAIL_REGION=your_aws_region
MAIL_FROM=email@instance.domain

Note:
	If not specified, MAIL_REGION defaults to "eu-west-1".

 3. Direct Email Sending Methods

These methods involve sending emails directly or through your own mail server. They require more setup and maintenance but offer more control.
Default: Direct SMTP Delivery
	When no specific email configuration is set, Bonfire will attempt to deliver emails directly to the recipients' SMTP servers.
	No additional configuration is needed as this is the default behaviour, but it's not recommended for production use due to deliverability issues (see above).

SMTP
SMTP (Simple Mail Transfer Protocol) is the standard method for sending emails across the internet. It's like the postal service for digital messages, ensuring your emails reach their destination regardless of the systems involved. While many opt for using a dedicated email delivery provider (see above), if you already run your own email server or use a provider that's not listed above which provides you with SMTP credentials, you can configure Bonfire to use that:
MAIL_BACKEND=smtp
MAIL_SERVER=your_smtp_server
MAIL_PORT=587
MAIL_USER=your_smtp_username
MAIL_PASSWORD=your_smtp_password
MAIL_FROM=email@instance.domain
Notes:
	MAIL_PORT defaults to 587 if not specified.

Sendmail
	Built into many Unix-like operating systemsMAIL_BACKEND=sendmail
MAIL_SERVER=/path/to/sendmail
MAIL_ARGS=
MAIL_QMAIL=true_or_false
MAIL_FROM=email@instance.domain

Notes:
	MAIL_SERVER defaults to /usr/bin/sendmail if not specified.
	MAIL_ARGS defaults to -N delay,failure,success if not specified.
	While sendmail can send mail directly (similar to the default behaviour), it can be set up to hand off emails to a local or remote SMTP server for delivery.
	Using sendmail usually provides more control and logging capabilities compared to the default direct SMTP delivery.

Postal
	Self-hosted email delivery platform
	Website: postalserver.ioMAIL_BACKEND=postal
MAIL_KEY=your_postal_api_key
MAIL_BASE_URI=https://your_postal_server_api.uri/
MAIL_FROM=email@instance.domain

 Copyright and License

Copyright (c) 2024 Bonfire Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Summary

 Functions

 Bonfire.Boundaries - Bonfire v0.9.10-classic-beta.169

Bonfire.Boundaries

Bonfire's boundaries framework provides a flexible way to control user access to specific actions and data. It ensures that users can only see and do what they're authorized to.
You can create custom groups of contacts (circles) and grant them specific permissions to interact with you and your content. They can help you take control of your online presence and ensure that your data is shared only with the people you want.
Boundaries are limits that you set for yourself or others to define what you're comfortable with.
These limits can be physical, like curtains or doors; digital, like sharing settings on social media; in writing, like codes of conduct; emotional, like feeling comfortable to take time for self-care; or mental, like choosing what you pay attention to. In Bonfire, boundaries can help limit the type of interactions that others may have with you or things you post.
Boundaries are important because they help you protect yourself, maintain your autonomy, and communicate your needs and expectations clearly.

 Glossary

	Term	Definition
	Subject or User	An individual who interacts with the system.
	Circle	A categorization method for users, allowing users to group other users (e.g., colleagues, friends).
	Verb	An action that a user can perform (e.g., read, reply).
	Permission	A value indicating whether an action is allowed (true), denied (false), or nil.
	Grant	Links a user or circle with a verb and permission.
	ACL	Access Control List, a collection of grants. Also called "boundary" or "boundary preset" in the app.
	Controlled	Links an object to one or more ACLs, to determine access based on the grants.
	Role	A group of verbs linked to a permission.

 Users and Circles

Circles are a way of categorizing users. Each user can have their own set of circles to categorize other users. Circles allow a user to group work colleagues differently from friends for example, and to allow different interactions for users in each circle or limit content visibility on a per-item basis.

 Verbs

Verbs represent actions users can perform, such as reading a post or replying to a message. Each verb has a unique ID and are defined in configuration.

 Permissions

A permission is a decision about whether the action may be performed or not. There are 3 possible values:
	true: yes, the action is allowed
	false: no, the action is explicitly denied (i.e. never permit)
	null/nil: unknown, the action isn't explicitly allowed (defaults to not allowed)

 Grants

A Grant links a subject (user or circle) with a Verb and a permission. It defines the access rights for a specific user or circle in relation to a particular action.

 ACLs

An Acl is a list of Grants used to define access permissions for objects.
Because a user could be in more than one circle and each circle may have a different permission, when a user attempts an action on an object, the system combines all relevant grants to determine the final permission. This combination prioritizes permissions as follows: false > true > nil, resulting in:
	input	input	result
	nil	nil	nil
	nil	true	true
	nil	false	false
	true	nil	true
	true	true	true
	true	false	false
	false	nil	false
	false	true	false
	false	false	false

In simpler terms, a final permission is granted only if the combined result is true. Think of it as requiring an explicit "yes" for permission, while "no" always takes precedence. Notably, nil acts as a sort of "weak no," it can be overridden by a true but not granting access on its own. This approach provides flexibility for implementing features like user blocking (false is crucial here).
For efficiency, nil is the assumed default and not stored in the database.

 Controlled - Applying boundaries to an object

The Controlled multimixin link an object to one or more ACLs. This allows for applying multiple boundaries to the same object. In case of overlapping permissions, the system combines them following the logic described above.

 Roles

Roles are groups of verbs associated with permissions. While not stored in the database, they are defined at the configuration level to enhance readability and user experience.

 Practical example: Surprise birthday party

Let's illustrate how boundaries work with a real-world example: planning a surprise party without the birthday girl finding out.

 1. Setting up users

iex> import Bonfire.Me.Fake
iex> organizer = fake_user!()
iex> birthday_girl = fake_user!()
iex> friends = [fake_user!(), fake_user!()]
iex> family = [fake_user!(), fake_user!()]

 2. Define your Circles

Organize users into relevant circles (friends and family).
iex> alias Bonfire.Boundaries.Circles
iex> {:ok, friends_circle} = Circles.create(organizer, %{named: %{name: "friends"}})
iex> Circles.add_to_circles(friends, friends_circle)
iex> Circles.is_encircled_by?(List.first(friends), friends_circle)
true
iex> {:ok, family_circle} = Circles.create(organizer, %{named: %{name: "family"}})
iex> Circles.add_to_circles(family, family_circle)

 3. Create the ACL (boundary preset)

This boundary will control access to the surprise party plans.
iex> alias Bonfire.Boundaries.Acls
iex> {:ok, boundary} = Acls.simple_create(organizer, "Surprise party")

 4. Grant permissions

Allow friends to discover, read, and respond to party plans, while family members can also edit details and send invitations.
iex> alias Bonfire.Boundaries.Grants
iex> Grants.grant(friends_circle.id, boundary.id, [:see, :read, :reply], true, current_user: organizer)
iex> Grants.grant(family_circle.id, boundary.id, [:see, :read, :reply, :edit, :invite], true, current_user: organizer)
Prevent the birthday person from accessing any party information.
iex> Grants.grant(birthday_girl.id, boundary.id, [:see, :read], false, current_user: organizer)

 5. Post about the party

iex> alias Bonfire.Posts
iex> {:ok, party_plan} = Posts.publish(
 current_user: organizer,
 boundary: boundary.id,
 post_attrs: %{post_content: %{name: "Surprise party!"}})

 6. Double-check applied boundaries

iex> Boundaries.can?(List.first(friends).id, :read, party_plan.id)
true
iex> Boundaries.can?(List.first(family).id, :invite, party_plan.id)
true
iex> Boundaries.can?(birthday_girl.id, :see, party_plan.id)
false
iex> Boundaries.load_pointer(party_plan.id, current_user: birthday_girl)
nil
By following these steps, the organizer can effectively manage access to ensure the birthday girl cannot see the party plans, while friends and family can.

 Copyright and License

Copyright (c) 2020 Bonfire Contributors
This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

 Summary

 Functions

 Bonfire.API.GraphQL - Bonfire v0.9.10-classic-beta.169

Bonfire.API.GraphQL

 GraphQL Introduction

Go to http://your-instance-url/api/ to start playing with the GraphQL API. The GraphiQL UI should autocomplete types, queries and mutations for you, and you can also explore the schema there.
Let's start with a simple GraphQL thoeretical query:
query {
 greetings(limit: 10) {
 greeting
 to {
 name
 }
 }
}
Let's break this apart:
	query {} is how you retrieve information from GraphQL.
	greetings is a field within the query.
	greetings takes a limit argument, a positive integer.
	greetings has two fields, greeting and to.
	to has one field, name.

This query is asking for a list of (up to) 10 greetings and the people
they are for. Notice that the result of both greetings and to are
map/object structures with their own fields and that if the type has
multiple fields, we can select more than one field.
Here is some possible data we could get returned
%{greetings: [
 %{greeting: "hello", to: %{ name: "dear reader"}}, # english
 %{greeting: "hallo", to: %{ name: "beste lezer"}}, # dutch
]}
Where is the magic? Typically an object type will reside in its own
table in the database, so this query is actually querying two tables
in one go. In fact, given a supporting schema, you can nest queries
arbitrarily and the backend will figure out how to run them.
The fact that you can represent arbitrarily complex queries puts quite
a lot of pressure on the backend to make it all efficient. This is
still a work in progress at this time.

 Absinthe Introduction

Every field is filled by a resolver. Let's take our existing query
and define a schema for it in Absinthe's query DSL:
defmodule MyApp.Schema do
 # the schema macro language
 use Absinthe.Schema.Notation
 # where we will actually resolve the fields
 alias MyApp.Resolver

 # Our user object is pretty simple, just a name
 object :user do
 field :name, non_null(:string)
 end

 # This one is slightly more complicated, we have that nested `to`
 object :greeting do
 # the easy one
 field :greeting, non_null(:string)
 # the hard one. `edge` is the term for when we cross an object boundary.
 field :to, non_null(:user), do: resolve(&Resolver.to_edge/3)
 end

 # something to put our top level queries in, because they're just fields too!
 object :queries do
 field :greetings, non_null(list_of(non_null(:string))) do
 arg :limit, :integer # optional
 resolve &Resolver.greetings/2 # we need to manually process this one
 end
 end

end
There are a couple of interesting things about this:
	Sprinklings of not_null to require that values be present (if you
don't return them, absinthe will get upset).
	Only two fields have explicit resolvers. Anything else will default
to a map key lookup (which is more often than not what you want).
	greeting.to_edge has a /3 resolver and queries.greetings a
/2 resolver.

To understand the last one (and partially the middle one), we must
understand how resolution works and what a parent is. The best way of
doing that is probably to look at the resolver code:
defmodule MyApp.Resolver do

 # For purposes of this, we will just fake the data out
 defp greetings_data() do
 [%{greeting: "hello", to: %{ name: "dear reader"}}, # english
 %{greeting: "hallo", to: %{ name: "beste lezer"}}, # dutch
]
 end

 # the /2 resolver takes only arguments (which in this case is just limit)
 # and an info (which we'll explain later)
 def greetings(%{limit: limit}, _info) when is_integer(limit) and limit > 0 do
 {:ok, Enum.take(greetings_data(), limit)} # absinthe expects an ok/error tuple
 end
 def greetings(_args, _info), do: {:ok, greetings_data()} # no limit

 # the /3 resolver takes an additional parent argument in first position.
 # `parent` here will be the `greeting` we are resolving `to` for.
 def to_edge(parent, args, info), do: Map.get(parent, :to)

end
The keen-eyed amongst you may have noticed I said the default resolver
is a map lookup and our to_edge/3 is a map lookup too, so
technically we didn't need to write it. But then you wouldn't have an
example of a /3 resolver! In most of the app, these will be querying
from the database, not looking up in a constant.
So for every field, a resolver function is run. It defaults to a map
lookup, but you can override it with resolve/1. It may or may not
have arguments. And all absinthe resolvers return an ok/error tuple.

 Copyright and License

Copyright (c) 2020 Bonfire, VoxPublica, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire Community - Bonfire v0.9.10-classic-beta.169

Bonfire Community

This app is a flavour of Bonfire and bundles the following extensions:
	Bonfire.Common - common utils
	Bonfire.Me - accounts, user profiles...
	Bonfire.Social - feeds, activities, posts, boosting, flagging, etc...
	Bonfire.UI.Social - interface for basic social activities
	Bonfire.Boundaries - define circles and associated privacy or permissions
	Bonfire.Federate.ActivityPub - federates activities with ActivityPub to participate in the fediverse
	Bonfire.Tag - @ mentions, hashtags, and tagging using topics/categories from Bonfire.Classify
	Bonfire.Classify - categories & classifications in taxonomies
	Bonfire.UI.Groups - groups
	Bonfire.UI.Topics - topics

 More information

See the main docs.

 Bonfire Classic - Bonfire v0.9.10-classic-beta.169

Bonfire Classic

This app is part of the Bonfire ecosystem and bundles the following extensions:
	Bonfire.Common - common utils
	Bonfire.Me - accounts, user profiles...
	Bonfire.Social - feeds, activities, posts, boosting, flagging, etc...
	Bonfire.UI.Social - interface for basic social activities
	Bonfire.Boundaries - define circles and associated privacy or permissions
	Bonfire.Federate.ActivityPub - federates activities with ActivityPub to participate in the fediverse
	Bonfire.Tag - @ mentions, hashtags, and tagging using topics/categories from Bonfire.Classify
	Bonfire.Classify - categories & classifications in taxonomies
	Bonfire.Geolocate - places

 More information

See the main docs.

 Bonfire Community - Bonfire v0.9.10-classic-beta.169

Bonfire Community

This app is a flavour of Bonfire and bundles the following extensions:
	Bonfire.Common - common utils
	Bonfire.Me - accounts, user profiles...
	Bonfire.Social - feeds, activities, posts, boosting, flagging, etc...
	Bonfire.UI.Social - interface for basic social activities
	Bonfire.Boundaries - define circles and associated privacy or permissions
	Bonfire.Federate.ActivityPub - federates activities with ActivityPub to participate in the fediverse
	Bonfire.Tag - @ mentions, hashtags, and tagging using topics/categories from Bonfire.Classify
	Bonfire.Classify - categories & classifications in taxonomies
	Bonfire.UI.Groups - groups
	Bonfire.UI.Topics - topics

 More information

See the main docs.

 Bonfire Cooperation - Bonfire v0.9.10-classic-beta.169

Bonfire Cooperation

This app is a flavour of Bonfire and bundles the following extensions:
	Bonfire.Common - common utils
	Bonfire.Me - accounts, user profiles...
	Bonfire.Social - feeds, activities, posts, boosting, flagging, etc...
	Bonfire.UI.Social - interface for basic social activities
	Bonfire.Boundaries - define circles and associated privacy or permissions
	Bonfire.Federate.ActivityPub - federates activities with ActivityPub to participate in the fediverse
	Bonfire.Tag - @ mentions, hashtags, and tagging using topics/categories from Bonfire.Classify
	Bonfire.Classify - categories & classifications in taxonomies
	Bonfire.ValueFlows - economic activities with ValueFlows
	Bonfire.API.GraphQL - a GraphQL client API
	Bonfire.UI.ValueFlows - reusable frontend components for economic activities
	Bonfire.Geolocate - places
	Bonfire.Quantify - units & measures
	Bonfire.ValueFlows.Observe - observation of economic resources
	Bonfire.Breadpub - needs & offers for mutual aid

 More information

See the main docs.

 Bonfire Coordination - Bonfire v0.9.10-classic-beta.169

Bonfire Coordination

This app is a flavour of Bonfire and bundles the following extensions:
	Bonfire.Common - common utils
	Bonfire.Me - accounts, user profiles...
	Bonfire.Social - feeds, activities, posts, boosting, flagging, etc...
	Bonfire.UI.Social - interface for basic social activities
	Bonfire.Boundaries - define circles and associated privacy or permissions
	Bonfire.Federate.ActivityPub - federates activities with ActivityPub to participate in the fediverse
	Bonfire.Tag - @ mentions, hashtags, and tagging using topics/categories from Bonfire.Classify
	Bonfire.Classify - categories & classifications in taxonomies
	Bonfire.ValueFlows - economic activities with ValueFlows
	Bonfire.API.GraphQL - a GraphQL client API
	Bonfire.UI.ValueFlows - reusable frontend components for economic activities
	Bonfire.UI.Coordination - basic coordination UI for projects and communities
	Bonfire.UI.Kanban - coordination tools with drag-and-drop card based UI

 More information

See the main docs.

 Open Science Network - Bonfire v0.9.10-classic-beta.169

Open Science Network

This app is part of the Bonfire ecosystem and bundles the following extensions:
	Bonfire.Common - common utils
	Bonfire.Me - accounts, user profiles...
	Bonfire.Social - feeds, activities, posts, boosting, flagging, etc...
	Bonfire.UI.Social - interface for basic social activities
	Bonfire.Boundaries - define circles and associated privacy or permissions
	Bonfire.Federate.ActivityPub - federates activities with ActivityPub to participate in the fediverse
	Bonfire.Tag - @ mentions, hashtags, and tagging using topics/categories from Bonfire.Classify
	Bonfire.Classify - categories & classifications in taxonomies
	Bonfire.Geolocate - places
	Etc...

 More information

See the main docs.

 Reflow - Bonfire v0.9.10-classic-beta.169

Reflow

This app is part of the Bonfire and ValueFlows ecosystems and bundles the following extensions:
	Bonfire.Common - common utils
	Bonfire.Me - accounts, user profiles...
	Bonfire.Social - feeds, activities, posts, boosting, flagging, etc...
	Bonfire.UI.Social - interface for basic social activities
	Bonfire.Boundaries - define circles and associated privacy or permissions
	Bonfire.Federate.ActivityPub - federates activities with ActivityPub to participate in the fediverse
	Bonfire.Tag - @ mentions, hashtags, and tagging using topics/categories from Bonfire.Classify
	Bonfire.Classify - categories & classifications in taxonomies
	Bonfire.Geolocate - places
	Bonfire.Quantify - units & measures
	Bonfire.ValueFlows - economic activities with ValueFlows
	Bonfire.ValueFlows.Observe - observation of economic resources
	Bonfire.API.GraphQL - a GraphQL client API
	Bonfire.UI.ValueFlows - reusable frontend components for economic activities
	Bonfire.UI.Reflow - frontend for the Reflow project

 More information

See the main docs.

 Upcycle - Bonfire v0.9.10-classic-beta.169

Upcycle

This app is a flavour of Bonfire and bundles the following extensions:
	Bonfire:Common - common utils
	Bonfire:Me - accounts, user profiles...
	Bonfire:Social - feeds, activities, posts, boosting, flagging, etc...
	Bonfire:UI:Social - interface for basic social activities
	Bonfire:Boundaries - define circles and associated privacy or permissions
	Bonfire:Federate:ActivityPub - federates activities with ActivityPub to participate in the fediverse
	Bonfire:Tag - @ mentions, hashtags, and tagging using topics/categories from Bonfire:Classify
	Bonfire:Classify - categories & classifications in taxonomies
	Bonfire:Geolocate - places
	Bonfire:Quantify - units & measures
	Bonfire:ValueFlows - economic activities with ValueFlows
	Bonfire:ValueFlows:Observe - observation of economic resources
	Bonfire:API:GraphQL - a GraphQL client API
	Bonfire:UI:ValueFlows - reusable frontend components for economic activities
	Bonfire:UI:Coordination - basic coordination UI for projects and communities
	Bonfire:Kanban - coordination tools with drag-and-drop card UI
	Bonfire:Breadpub - needs & offers for mutual aid
	Bonfire:Files - file management for bonfire apps
	Bonfire:Data:SharedUser - database models for shared users in the bonfire ecosystem
	Bonfire:Upcycle - Upcycle UI

 More information

See the main docs.

 Bonfire.Data.Assort - Bonfire v0.9.10-classic-beta.169

Bonfire.Data.Assort

Various assorted database schemas for:
	Ranked linked items
	TODO: move schemas from bonfire_classify and bonfire_tag here?

 Copyright and License

Copyright (c) 2020 Bonfire Contributors

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.

 Bonfire.Data.AccessControl - Bonfire v0.9.10-classic-beta.169

Bonfire.Data.AccessControl

See Bonfire.Boundaries for docs: https://github.com/bonfire-networks/bonfire_boundaries

 Copyright and License

Copyright (c) 2020 James Laver, bonfire_data_access_control Contributors
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.

 Bonfire.Data.ActivityPub - Bonfire v0.9.10-classic-beta.169

Bonfire.Data.ActivityPub

Actor schema.

 Copyright and License

Copyright (c) 2020 James Laver, bonfire_data_activity_pub Contributors

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.

 Bonfire.Data.Identity - Bonfire v0.9.10-classic-beta.169

Bonfire.Data.Identity

Schemas for accounts, users, etc.

 Copyright and License

Copyright (c) 2020 James Laver, bonfire_data_identity Contributors

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.

 Bonfire.Data.Social - Bonfire v0.9.10-classic-beta.169

Bonfire.Data.Social

Schemas for social activities, posts, feeds, etc

 Copyright and License

Copyright (c) 2020 James Laver, bonfire_data_social Contributors

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.

 Bonfire.Data.Edges - Bonfire v0.9.10-classic-beta.169

Bonfire.Data.Edges

 Bonfire.Data.SharedUser - Bonfire v0.9.10-classic-beta.169

Bonfire.Data.SharedUser

A mixin for shared user personas (which multiple accounts can use)

 Summary

 Functions

 Bonfire.UI.Common - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Common

A library of common utils and helpers used across Bonfire extensions
	Many common functions for web UIs
	Common and generic re-usable components
	Etc

 Handy commands

 Copyright and License

Copyright (c) 2022 Bonfire Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Summary

 Functions

 Bonfire.UI.Me - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Me

[image:]
Bonfire.UI.Me is an extension that includes the main User Interfaces (routes, pages and components) for functionality around accounts, users, profiles, authentication, etc.
This extension is meant to be used by other extensions like Bonfire.Me, which provide logic for the UI to work with.
You can customise it by forking, but we recommend creating an extension which uses this one as a dependency, and defines your custom components, views, and/or routes (you can then comment Bonfire.UI.Me.Routes from your top-level Router to use your custom routes and views instead).

 Stack

So far, Bonfire UI extensions are built with the PETALS stack (note that is not a requirement), which means:
	Phoenix
	Elixir
	TailwindCSS
	Alpine.js
	LiveView
	Surface

Surface is a server-side rendering component library (built on top of Phoenix and LiveView) that inherits a lot of design patterns from popular JS framework like Vue.js and React, while being almost JavaScript-free compared to common SPAs.

 Scaffolding

The relevant folders are:
	Components: Surface stateless and stateful components.
	Views: The main pages that are rendered when navigating to a specific route
	Test: All the unit tests for the specific module.

 Other resources

	A blog post that introduces the concept of themeable bonfire apps

 Copyright and License

Copyright (c) 2022 Bonfire Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Summary

 Functions

 Bonfire.UI.Social - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Social

[image:]
Bonfire.UI.Social is an extension that includes the main User Interfaces (routes, pages and components) required to have a fully working federated social network app.
This extension is meant to be used by other extensions like Bonfire.Social, which provides logic for the UI to work with/
You can customise it by forking, but we recommend creating an extension which uses this one as a dependency, and defines your custom components, views, and/or routes (you can then comment Bonfire.UI.Social.Routes from your top-level Router to use your custom routes and views instead).

 Stack

So far, Bonfire UI extensions are built with the PETALS stack (note that is not a requirement), which means:
	Phoenix
	Elixir
	TailwindCSS
	Alpine.js
	LiveView
	Surface

Surface is a server-side rendering component library (built on top of Phoenix and LiveView) that inherits a lot of design patterns from popular JS framework like Vue.js and React, while being almost JavaScript-free compared to common SPAs.

 Scaffolding

The relevant folders are:
	Components: Surface stateless and stateful components.
	Views: The main pages that are rendered when navigating to a specific route
	Test: All the unit tests for the specific module.

 Other resources

	A blog post that introduces the concept of themeable bonfire apps

 Copyright and License

Copyright (c) 2020 Bonfire, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire.UI.Social.Graph - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Social.Graph

[image:]
Bonfire.UI.Social.Graph is an extension that includes some User Interfaces (routes, pages and components) for following and otherwise managing one's network in Bonfire.
You can customise it by forking, but we recommend creating an extension which uses this one as a dependency, and defines your custom components, views, and/or routes (you can then comment Bonfire.UI.Social.Routes from your top-level Router to use your custom routes and views instead).

 Stack

So far, Bonfire UI extensions are built with the PETALS stack (note that is not a requirement), which means:
	Phoenix
	Elixir
	TailwindCSS
	Alpine.js
	LiveView
	Surface

Surface is a server-side rendering component library (built on top of Phoenix and LiveView) that inherits a lot of design patterns from popular JS framework like Vue.js and React, while being almost JavaScript-free compared to common SPAs.

 Scaffolding

The relevant folders are:
	Components: Surface stateless and stateful components.
	Views: The main pages that are rendered when navigating to a specific route
	Test: All the unit tests for the specific module.

 Other resources

	A blog post that introduces the concept of themeable bonfire apps

 Copyright and License

Copyright (c) 2020 Bonfire, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire.UI.Posts - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Posts

[image:]
Bonfire.UI.Posts is an extension that includes some User Interfaces (routes, pages and components) for writing and reading posts in Bonfire.
You can customise it by forking, but we recommend creating an extension which uses this one as a dependency, and defines your custom components, views, and/or routes (you can then comment Bonfire.UI.Posts.Routes from your top-level Router to use your custom routes and views instead).

 Stack

So far, Bonfire UI extensions are built with the PETALS stack (note that is not a requirement), which means:
	Phoenix
	Elixir
	TailwindCSS
	Alpine.js
	LiveView
	Surface

Surface is a server-side rendering component library (built on top of Phoenix and LiveView) that inherits a lot of design patterns from popular JS framework like Vue.js and React, while being almost JavaScript-free compared to common SPAs.

 Scaffolding

The relevant folders are:
	Components: Surface stateless and stateful components.
	Views: The main pages that are rendered when navigating to a specific route
	Test: All the unit tests for the specific module.

 Other resources

	A blog post that introduces the concept of themeable bonfire apps

 Copyright and License

Copyright (c) 2020 Bonfire, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire.UI.Messages - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Messages

[image:]
Bonfire.UI.Messages is an extension that includes some User Interfaces (routes, pages and components) for messaging in Bonfire.
You can customise it by forking, but we recommend creating an extension which uses this one as a dependency, and defines your custom components, views, and/or routes (you can then comment Bonfire.UI.Messages.Routes from your top-level Router to use your custom routes and views instead).

 Stack

So far, Bonfire UI extensions are built with the PETALS stack (note that is not a requirement), which means:
	Phoenix
	Elixir
	TailwindCSS
	Alpine.js
	LiveView
	Surface

Surface is a server-side rendering component library (built on top of Phoenix and LiveView) that inherits a lot of design patterns from popular JS framework like Vue.js and React, while being almost JavaScript-free compared to common SPAs.

 Scaffolding

The relevant folders are:
	Components: Surface stateless and stateful components.
	Views: The main pages that are rendered when navigating to a specific route
	Test: All the unit tests for the specific module.

 Other resources

	A blog post that introduces the concept of themeable bonfire apps

 Copyright and License

Copyright (c) 2020 Bonfire, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire.UI.Reactions - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Reactions

[image:]
Bonfire.UI.Reactions is an extension that includes some User Interfaces (routes, pages and components) for liking, boosting, pinning, bookmarking, etc, in Bonfire.
You can customise it by forking, but we recommend creating an extension which uses this one as a dependency, and defines your custom components, views, and/or routes (you can then comment Bonfire.UI.Reactions.Routes from your top-level Router to use your custom routes and views instead).

 Stack

So far, Bonfire UI extensions are built with the PETALS stack (note that is not a requirement), which means:
	Phoenix
	Elixir
	TailwindCSS
	Alpine.js
	LiveView
	Surface

Surface is a server-side rendering component library (built on top of Phoenix and LiveView) that inherits a lot of design patterns from popular JS framework like Vue.js and React, while being almost JavaScript-free compared to common SPAs.

 Scaffolding

The relevant folders are:
	Components: Surface stateless and stateful components.
	Views: The main pages that are rendered when navigating to a specific route
	Test: All the unit tests for the specific module.

 Other resources

	A blog post that introduces the concept of themeable bonfire apps

 Copyright and License

Copyright (c) 2020 Bonfire, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire.UI.Moderation - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Moderation

[image:]
Bonfire.UI.Moderation is an extension that includes some User Interfaces (routes, pages and components) for flagging content and moderation in Bonfire.
You can customise it by forking, but we recommend creating an extension which uses this one as a dependency, and defines your custom components, views, and/or routes (you can then comment Bonfire.UI.Social.Routes from your top-level Router to use your custom routes and views instead).

 Stack

So far, Bonfire UI extensions are built with the PETALS stack (note that is not a requirement), which means:
	Phoenix
	Elixir
	TailwindCSS
	Alpine.js
	LiveView
	Surface

Surface is a server-side rendering component library (built on top of Phoenix and LiveView) that inherits a lot of design patterns from popular JS framework like Vue.js and React, while being almost JavaScript-free compared to common SPAs.

 Scaffolding

The relevant folders are:
	Components: Surface stateless and stateful components.
	Views: The main pages that are rendered when navigating to a specific route
	Test: All the unit tests for the specific module.

 Other resources

	A blog post that introduces the concept of themeable bonfire apps

 Copyright and License

Copyright (c) 2020 Bonfire, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire.UI.Topics - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Topics

 Bonfire.UI.Groups - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Groups

Pages and UI components for groups in Bonfire.
It builds upon the schemas and functionality in Bonfire.Classify and Bonfire.Tag.

 Roadmap

Group Milestone

 Sponsors

Nlnet | Become a sponsor

 📖 Documentation

	Website
	Set up an instance - for testing and evaluation only!
	Hacking on Bonfire
	Code documentation
	Community chat

 Copyright and License

Copyright (c) 2020-2022 Bonfire Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire.UI.ValueFlows - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.ValueFlows

An extension for Bonfire that handles:
	UI components and views for ValueFlows

 Handy commands

 Copyright and License

Copyright (c) 2020 Bonfire, VoxPublica, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire.UI.Kanban - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Kanban

An extension for Bonfire that handles:
	UI components and views for a kanban app

 Handy commands

 Copyright and License

Copyright (c) 2020 Bonfire, VoxPublica, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Summary

 Functions

 Bonfire.UI.Coordination - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Coordination

An extension for Bonfire that handles:
	UI components and views for ValueFlows

 Handy commands

 Copyright and License

Copyright (c) 2020 Bonfire, VoxPublica, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Summary

 Functions

 Bonfire.UI.Reflow - Bonfire v0.9.10-classic-beta.169

Bonfire.UI.Reflow

An extension for Bonfire that handles:
	UI components and views for ValueFlows

 Handy commands

 Copyright and License

Copyright (c) 2020 Bonfire, VoxPublica, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Bonfire.Files - Bonfire v0.9.10-classic-beta.169

Bonfire.Files

File management extension for Bonfire.
Bonfire Files wraps the Entrepot a file management library,
adding support for media type checking, image resizing, and the like,
along with creating a pointable table for storage of file data.

 Configuration

 TODO's

	Generate docs
	More tests

This module contains general functions for handling files, and also an Ecto schema which is a multimixin for storing one or more media attached to a Pointable object.
An uploader definition must be provided for each upload, or will be automatically chosen based on the file type.
A few definitions exist as defaults inside of this namespace, but you can also define
your own - a Bonfire.Files.Definition is an extension of Waffle.Definition,
however the allowed_media_types/0 and max_file_size/0 callback are added,
with which you need to define what media types are accepted for these types of uploads.
(You can also return :all to accept all media types).
To use the uploader:
iex> {:ok, media} = Bonfire.Files.upload(MyUploader, creator_or_context, %{path: "./150.png"})
iex> media.media_type
 "image/png"
iex> Bonfire.Files.remote_url(MyUploader, media)
 "/uploads/my/01F3AY6JV30G06BY4DR9BTW5EH"

 Summary

 Functions

 Bonfire.Common - Bonfire v0.9.10-classic-beta.169

Bonfire.Common

A library of common utils and helpers used across Bonfire extensions.
An extension for Bonfire that contains:
	Many common functions in Bonfire.Common.Utils
	Path and URL generators in Bonfire.Common.URIs
	Date and time helpers in Bonfire.Common.DatesTimes
	Etc

 Handy commands

 Copyright and License

Copyright (c) 2020 Bonfire, VoxPublica, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Summary

 Functions

 Bonfire.Epics - Bonfire v0.9.10-classic-beta.169

Bonfire.Epics

Epics are a extensible way of structuring tasks.
This library is designed to provide a structured way to define and execute complex workflows in Elixir applications. It introduces the concept of "Epics" and "Acts" to organize and run sequences of operations.

 Key components and concepts:

	Bonfire.Epics.Epic: An Epic represents a complete workflow or process. It's a container that holds a sequence of Acts to be executed, along with state information, errors, and assigned values.
	Bonfire.Epics.Act: An Act is an individual step or operation within an Epic. Each Act is typically a module that implements a specific task or functionality.
	Execution Flow & Parallel Execution: Epics are executed by running their Acts in sequence. The library provides mechanisms to define, modify, and run these sequences. The library supports running multiple Acts in parallel for improved performance in certain scenarios.
	Shared State: An Epic can maintain state throughout its execution using the 'assigns' map, allowing data to be passed between Acts.
	Configurable: Epics can be defined in configuration, including at runtime, making it easy to set up and modify workflows without changing code.
	Database Transactions: See the Bonfire.Ecto library for helpers to queue changeset operations within Acts and then run them all together in a single transaction: https://github.com/bonfire-networks/bonfire_ecto
	Error Handling: The library includes built-in error handling, allowing errors to be captured and associated with specific Acts within an Epic.

This library is particularly useful for applications that need to manage complex, multi-step tasks with error handling and state management. It provides a flexible and extensible way to define, configure, and execute these processes, making it easier to maintain and modify complex workflows.

 How it works

	Each Act is implemented as a module with a run/2 function that performs a specific task.
	Users define an Epic, either in code or configuration, as sequences of Acts.
	When the Epic is run, it executes each Act in sequence (or with some Acts optionally running in parallel), maintaining state and handling errors along the way. Acts can update the Epic's state, adding errors, and assigning values that can be used by subsequent Acts.
	After all Acts are executed, the final state of the Epic is returned, including any errors or assigned values.

 1. How to write an Act

Write a module with a run/2 function that takes an Epic and an Act, performs a specific task, and returns an Epic.
defmodule Bonfire.Label.Acts.LabelObject do
 @moduledoc """
 Takes an object and label and returns a changeset for labeling that object.
 Implements `Bonfire.Epics.Act`.

 Epic Options:
 * `:current_user` - user that will create the page, required.

 Act Options:
 * `:as` - key to where we find the label(s) to add, and then assign changeset to, default: `:label`.
 * `:object` (configurable) - id to use for the thing to label
 * `:attrs` - epic options key to find the attributes at, default: `:attrs`.
 """

 use Arrows
 import Bonfire.Epics

 @doc false
 def run(epic, act) do
 current_user = Bonfire.Common.Utils.current_user(epic.assigns[:options])

 cond do
 epic.errors != [] ->
 maybe_debug(
 epic,
 act,
 length(epic.errors),
 "Skipping due to epic errors"
)

 epic

 not (is_struct(current_user) or is_binary(current_user)) ->
 maybe_debug(
 epic,
 act,
 current_user,
 "Skipping due to missing current_user"
)

 epic

 true ->
 as = Keyword.get(act.options, :as) || Keyword.get(act.options, :on, :label)
 object_key = Keyword.get(act.options, :object, :object)

 label = Keyword.get(epic.assigns[:options], as, [])
 object = Keyword.get(epic.assigns[:options], object_key, nil)

 Bonfire.Label.Labelling.label_object(label, object,
 return: :changeset,
 current_user: current_user
)
 |> Map.put(:action, :insert)
 |> Bonfire.Epics.Epic.assign(epic, as, ...)
 |> Bonfire.Ecto.Acts.Work.add(:label)
 end
 end
end

 2. How to define an Epic

 Simple Epic where each Act executes sequentially

 @page_act_opts [on: :page, attrs: :page_attrs]

 config :bonfire_pages, Bonfire.Pages,
 epics: [
 create: [
 # Create a changeset for insertion
 {Bonfire.Pages.Acts.Page.Create, @page_act_opts},
 # with a sanitised body and tags extracted,
 {Bonfire.Social.Acts.PostContents, @page_act_opts},
 # a caretaker,
 {Bonfire.Me.Acts.Caretaker, @page_act_opts},
 # and a creator,
 {Bonfire.Me.Acts.Creator, @page_act_opts},
 # and possibly fetch contents of URLs,
 {Bonfire.Files.Acts.URLPreviews, @page_act_opts},
 # possibly with uploaded files,
 {Bonfire.Files.Acts.AttachMedia, @page_act_opts},
 # with extracted tags fully hooked up,
 {Bonfire.Tag.Acts.Tag, @page_act_opts},
 # and the appropriate boundaries established,
 {Bonfire.Boundaries.Acts.SetBoundaries, @page_act_opts},

 # Now we open a Postgres transaction and actually do the insertions in DB
 Bonfire.Ecto.Acts.Begin,
 # Run our inserts
 Bonfire.Ecto.Acts.Work,
 Bonfire.Ecto.Acts.Commit,

 # Enqueue for indexing by meilisearch
 {Bonfire.Search.Acts.Queue, @page_act_opts}
]
]

 Advanced Epic, where some Acts execute in parallel

 config :bonfire_posts, Bonfire.Posts,
 epics: [
 publish: [
 # Create a changeset for insertion
 Bonfire.Posts.Acts.Posts.Publish,
 # These next 3 Acts are run in parallel
 [
 # with a sanitised body and tags extracted,
 {Bonfire.Social.Acts.PostContents, on: :post},

 # assign a caretaker,
 {Bonfire.Me.Acts.Caretaker, on: :post},

 # record the creator,
 {Bonfire.Me.Acts.Creator, on: :post}
],
 # These next 4 Acts are run in parallel (they run after the previous 3 because they depend on the outputs of those Acts)
 [
 # possibly fetch contents of URLs,
 {Bonfire.Files.Acts.URLPreviews, on: :post},

 # possibly occurring in a thread,
 {Bonfire.Social.Acts.Threaded, on: :post},

 # with extracted tags/mentions fully hooked up,
 {Bonfire.Tag.Acts.Tag, on: :post},

 # maybe set as sensitive,
 {Bonfire.Social.Acts.Sensitivity, on: :post}
],
 # These next 3 Acts are run in parallel (they run after the previous 4 because they depend on the outputs of those Acts)
 [
 # possibly with uploaded/linked media (optionally depends on URLPreviews),
 {Bonfire.Files.Acts.AttachMedia, on: :post},

 # with appropriate boundaries established (depends on Threaded),
 {Bonfire.Boundaries.Acts.SetBoundaries, on: :post},

 # summarised by an activity (possibly appearing in feeds),
 {Bonfire.Social.Acts.Activity, on: :post}
],

 # Now we open a Postgres transaction and actually do the insertions in DB
 Bonfire.Ecto.Acts.Begin,
 # Run our inserts
 Bonfire.Ecto.Acts.Work,
 Bonfire.Ecto.Acts.Commit,

 # Preload data & Publish live feed updates via (in-memory) PubSub
 {Bonfire.Social.Acts.LivePush, on: :post},

 # These steps are run in parallel
 [
 # Enqueue for indexing by meilisearch
 {Bonfire.Search.Acts.Queue, on: :post},

 # Prepare JSON for federation and add to queue (oban).
 {Bonfire.Social.Acts.Federate, on: :post}
],

 # Once the activity/object exists (depends on federation being done)
 {Bonfire.Tags.Acts.AutoBoost, on: :post}
]
]

 3. How to run an Epic

Bonfire.Epics.run_epic(Bonfire.Posts, :publish, on: :post)

 Copyright and License

Copyright (c) 2022 Bonfire Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Summary

 Functions

 Bonfire.Ecto - Bonfire v0.9.10-classic-beta.169

Bonfire.Ecto

Bonfire.Ecto contains Ecto transactional support as acts for Bonfire.Epics

 Introduction

Bonfire.Ecto is designed to facilitate complex Ecto transaction handling within an Elixir application that uses Bonfire.Epics to execute a sequence of operations (or Acts). These modules provide a structured way to manage database transactions as a series of acts and managing them within an Epic, offering flexibility and control over database interactions, ensuring that transactions are executed efficiently.

 Modules Overview

	Bonfire.Ecto.Acts.Begin
	Responsible for initiating a transaction if certain conditions are met. It ensures that the transaction is only started when it is sensible to do so, based on the current state of the Epic.

	Bonfire.Ecto.Acts.Work
	Handles queued database operations within a transaction. Operations are queued using the Bonfire.Ecto.Acts.Work.add/2 function and executed if there are no errors in the Epic or changesets.

	Bonfire.Ecto.Acts.Commit
	A placeholder marker used by Bonfire.Ecto.Acts.Begin to identify when to commit the transaction.

 Usage

1. Initial Setup
Ensure that you have Ecto and Bonfire.Epics installed and configured in your application, and then install this linrary.
2. Using Bonfire.Ecto.Acts.Begin
Refer to Bonfire.Epics docs to define some Acts and Epics: https://github.com/bonfire-networks/bonfire_epics
3. Queue database operation(s) in an Act
Queue operations by calling the Bonfire.Ecto.Acts.Work.add/2 function, providing the epic and a key representing the changeset to be processed.
epic = Bonfire.Ecto.Acts.Work.add(epic, :some_changeset)
3. Add the three Bonfire.Ecto Acts to your Epic
 # First come the Acts that prepare the changeset and call `Bonfire.Ecto.Acts.Work.add/2` to queue it

 # Open a Postgres transaction and actually do the insertions in DB
 Bonfire.Ecto.Acts.Begin,

 # Run our inserts
 Bonfire.Ecto.Acts.Work,
 Bonfire.Ecto.Acts.Commit,

 # Then can come some Acts that process the result of the transaction

 Bonfire.Classify - Bonfire v0.9.10-classic-beta.169

Bonfire.Classify

An extension for Bonfire that handles:
	Defining categories/topics
	Defining relationships (parent or related) between categories to create taxonomies

Use Bonfire.Tag if you want to tag/classify posts or other objects with these categories/topics.

 Handy commands

 Copyright and License

Copyright (c) 2020 Bonfire, Haha Academy, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Summary

 Functions

 Bonfire.Tag - Bonfire v0.9.10-classic-beta.169

Bonfire.Tag

An extension for Bonfire that handles tagging posts or other things:
	@ mentions
	#hashtags
	others (e.g. with a Category from Bonfire.Classify or a location from Bonfire.Geolocate)

 Handy commands

 Copyright and License

Copyright (c) 2020 Bonfire, Haha Academy, and CommonsPub Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Summary

 Functions

 Bonfire.Label - Bonfire v0.9.10-classic-beta.169

Bonfire.Label

Bonfire.Label is a powerful and flexible extension designed to enhance content moderation and improve online safety. Inspired by the design principles outlined by Prosocial Design (specifically the Label Misleading Content & Add Links to Reliable Related Content pattern), this library enables the addition of custom labels and descriptions to user-generated posts.
This feature aids in identifying and marking potentially misleading, harmful, or unsafe content, while also providing users with links to reliable and related information.

 Features

	Custom Labeling: Easily add custom labels to posts, categorizing them based on content, reliability, and safety.
	Dynamic Descriptions: Append descriptions to posts to provide context, warnings, or additional information.
	Link to Reliable Sources: Option to include up to 3 links to authoritative sources for further reading or fact-checking.
	Configurable Settings: Tailor the permission system to fit the specific governance of your platform.
	User-friendly Interface: Intuitive tools for moderators and administrators to manage labels and descriptions.

 Copyright and License

Copyright (c) 2020 Bonfire Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public
License along with this program. If not, see https://www.gnu.org/licenses/.

 Summary

 Functions

 Bonfire.OpenScience - Bonfire v0.9.10-classic-beta.169

Bonfire.OpenScience

See https://bonfirenetworks.org/app/open-science/

 Copyright and License

Copyright (c) 2024 Bonfire and Open Science Network Contributors
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNES